Zum Hauptinhalt springen

Suchergebnisse

UB Katalog
Ermittle Trefferzahl…

Artikel & mehr
322 Treffer

Suchmaske

Suchtipp für den Bereich Artikel & mehr: Wörter werden automatisch mit UND verknüpft. Eine ODER-Verknüpfung erreicht man mit dem Zeichen "|", eine NICHT-Verknüpfung mit einem "-" (Minus) vor einem Wort. Anführungszeichen ermöglichen eine Phrasensuche.
Beispiele: (burg | schloss) -mittelalter, "berufliche bildung"

Das folgende Suchfeld wird hier nicht unterstützt: "Signatur / Strichcode".

Suchergebnisse einschränken oder erweitern

Erscheinungszeitraum

Mehr Treffer

Weniger Treffer

Gefunden in

Art der Quelle

Schlagwort

Verlag

Publikation

Geographischer Bezug

322 Treffer

Sortierung: 
  1. Lane, H. ; Sarte, P. M. ; et al.
    2023
    academicJournal
  2. Azadani, Javad G. ; Jiang, Wei ; et al.
    2020
    academicJournal
  3. Richardson, Joel E ; Baldarelli, Richard M ; et al.
    In: Faculty Research 2022, 2022
    Online academicJournal
  4. Weber, T. ; Roessli, B. ; et al.
    2017
    academicJournal
  5. Ramzan, Rashid ; Noor, N A ; et al.
    In: Physica Scripta ; volume 97, issue 8, page 085821 ; ISSN 0031-8949 1402-4896, 2022
    academicJournal
  6. Anand Reghuvaran (14280737) ; Madhav Menon (14284394)
    2022
    Bild
  7. Ishikawa, T ; Watanabe, T ; et al.
    In: Journal of Physics: Conference Series ; volume 592, page 012107 ; ISSN 1742-6596, 2015
    Online academicJournal
  8. Watanabe, Tadataka ; Ishikawa, Takashi ; et al.
    2014
    academicJournal
  9. Kaur, Ramandeep ; Maitra, T. ; et al.
    2012
    academicJournal
  10. Pandey, Sudhir K.
    2011
    academicJournal
  11. Millet, P. ; Satto, C. ; et al.
    1998
    academicJournal
  12. Figure 3. Changes in axon and synapse integrity could affect projection neuron function. ; (A) Projection neurons (PNs) of a 1 and a 7 weeks old brains are labeled with a reporter line (GH146-Gal4;UASGCaMP3 or GH146 >GCaMP3) and stained with an anti-GFP antibody (green). AL, antennal lobe; cx, mushroom body calyx; LH, lateral horn; lateral cell body cluster is shown in dotted box. Scale bar: 25 µm. (B) Average number of PNs in the lateral, dorsal clusters and the total of both clusters. Orange boxes represent young flies (1 week), while grey boxes represent old flies (7 weeks) in all figures. There is a mild but significant decrease in the number of reporter-labeled PNs in aged flies (Students t-test, n = 19–21) (C) Average diameter of projection neuron cell body sizes of 1 (orange) and 7 (grey) weeks old flies. The cell bodies of PNs of aged flies are significantly smaller (Students t-test, n = 19–21). (D) The box plot shows that there is no change in the expression of NCad in the defined areas for quantification (antibody staining against N-cadherin as a synaptic marker) in 1 (orange) and 7 (grey) weeks old flies AL and LH (Students t-test, n = 19–21). (E) Normalized expression levels of the GCaMP reporter protein in PNs (GH146 >GCaMP3) in young and old flies. The expression was normalized to Ncad antibody staining. There is no reduction of GCaMP expression in old as compared to young flies, but instead a slight but significant increase (Students t-test, n = 19–21). (F) Volcano plot of RNA-sequencing data of selected genes displaying the genes that are downregulated and upregulated in 7 weeks old brains compared to 1 week old brains, respectively. Only genes above the cutoff of –log10 (p-value adjusted (padj)) are considered significantly changed (above black line). While several AChR receptors were significantly downregulated in the brain, this was not the case in the antenna (Figure 4—figure supplement 2C). In addition, several aging-related genes are upregulated in older brains. Selected genes are displayed and were color-labeled by gene ontology analysis (orange: aging; green: neuronal function). (G) Reporter construct showing the localization of acetylcholine receptor (AChR) Dα7 (GH146-Gal4;UAS-Dα7-GFP, stained with anti-GFP antibody (green)) and ToPro nuclear marker (shown in pink) in the AL and lateral horn (LH). There is a decline at PN postsynaptic sites in the AL supporting an aging-related decline in the integrity of cholinergic synapses. For instance, the localization of Dα7 at presynaptic terminals and axons is lost in old flies (n = 20/20) in contrast to young animals (n = 0/20). See missing signal in axon and presynaptic terminals in the MB calyx and LH. Scale bar: 25 µm (H) Quantification of mean gray value (MGV) of ToPro staining of cell bodies in the area of the LH revealed a decrease in the number of cells in old as compared to young flies (n = 20). (I) A box plot shows a significant reduction in the AChR Dα7 reporter construct signal (mean grey value, MGV) of 7 weeks old flies (grey) compared to 1 week old flies (orange) at the level of the AL. Box plots show median and upper/lower quartiles. All p-values represent: ns > 0.05, *p≤0.05, **p≤0.01, ***p≤0.001. (J) Representative images of antennal lobes of 1 and 7 weeks old flies. Brains express the reporter mito-mcherry in PNs (GH146-Gal4;UAS-mito-mcherry; anti-RFP, red) and are stained for anti-ChAT (blue). (K) Representative images of the mushroom body calyx of 1 and 7 weeks old flies. (L) Quantification of relative expression of a mitochondria reporter (GH146-Gal4;UAS-mito-mcherry) and ChAT in AL, LH, and calyx. Note that mitochondria and ChAT staining are significantly reduced in the MB calyx as compared to an mito-mcherry or ChAT expression in other parts of the brain in old flies as compared to younger animals (see methods). This suggests that ChAT does not decrease equally in all brain parts, but in particular in areas such as the MB calyx. Graphs display mean relative levels ± SEM. Student’s t-test: ns > 0.05, *p≤0.05, **p≤0.01, ***p≤0.001. (M) Confocal and high-resolution STED microscopy images in the calyx of flies expressing BRP-shortGFP under control of GH146-Gal4 driver line. Green and magenta represent anti-GFP and anti-Drep2C-Term immunostaining, respectively. White squares in (M, left column) indicate the magnified region in (M, right column). Scale bars represent 2 μm in (M, left) and 0.5 μm in (M, right). (N) Number of active zones and (O) postsynaptic densities significantly decrease upon aging. n = 10–12; Student’s t-test. ***p
    2018
    unknown
  13. Figure 5. SOD2 deprived PNs resemble neurons in aged brains. ; (A) SOD2 RNAi (GH146-Gal4;UAS-SOD2i) expressing and SOD2 RNAi negative controls labeled with the reporter line (GH146-Gal4;UASGCaMP3 or GH146 >GCaMP3) and stained with an anti-GFP antibody (green). AL, antennal lobe; cx, mushroom body calyx; LH, lateral horn; lateral cell body cluster is shown in dotted box. Scale bar: 25 µm. (B) Average number of PNs in the lateral, dorsal clusters and the total of both clusters. Orange boxes represent 1 week control flies, while blue boxes represent flies carrying GH146 >SOD2 i in all figures. There is no significant decrease in the number of reporter-labeled PNs upon SOD2 knock-down (Students t-test, n = 19–21) (C) Average diameter of projection neuron cell body sizes of controls (orange) and SOD2 knock-down flies (blue). The cell bodies of PNs are significantly smaller when SOD2 is reduced exclusively in PNs (Student’s t-test, n = 19–21). (D) Scatter plots showing normalized GCaMP signal stained with α-GFP antibody (MGV). The intensity of staining within the LH (upper panel) and within the calyx (bottom panel) was normalized to the background signal in a non-GFP positive brain area of the same brain (Student’s t-test, n = 28). (E) Mean gray value (MGV) of anti-ChAT antibody staining in the MB calyx. Note that knocking-down SOD2 in PNs significantly reduced the ChAT signal (Student’s t-test, n = 28). (F) Representative image of in vivo two-photon imaging of fluorescence of GCaMP3 in PNs (GH146 >GCaMP) at their axonal extensions (boutons) in the mushroom body calyx for test (GH146 >GCaMP;SOD2i) and control flies (GH146 >GCaMP;+). Odor-induced fluorescence change of GCaMP3 are indicated as false color images (right column) for one representative animal of each genotype. Scale bars: 20 µm. (G) maximal fluorescence changes of GCaMP3 in individual responsive boutons and (H) number of responsive boutons upon stimulation with 3-octanol (12 mM) or 4-methylcyclohexanol (16 mM) in the two imaged focal planes. n = 10; Student’s t-test. (ns >0.05, *p≤0.05, **p≤0.01, ***p≤0.001). Box plots indicate means, medians, interquartile ranges, and 1–99% ranges.
    2018
    unknown
  14. Zhou, Chengquan ; Yang, Guijun ; et al.
    In: IEEE Transactions on Geoscience and Remote Sensing ; volume 56, issue 8, page 4618-4632 ; ISSN 0196-2892 1558-0644, 2018
    Online academicJournal
  15. Weber, T. ; Roessli, B. ; et al.
    2017
    academicJournal
  16. Greven, Stadtarchiv
    2016
    academicJournal
  17. Kaur, Ramandeep ; Maitra, Tulika ; et al.
    In: AIP Conference Proceedings ; ISSN 0094-243X, 2013
    Konferenz
  18. Greven, Stadtarchiv
    2016
    unknown
  19. Johansen, J.
    2022
    unknown
xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -