Zum Hauptinhalt springen

Suchergebnisse

UB Katalog
Ermittle Trefferzahl…

Artikel & mehr
3 Treffer

Suchmaske

Suchtipp für den Bereich Artikel & mehr: Wörter werden automatisch mit UND verknüpft. Eine ODER-Verknüpfung erreicht man mit dem Zeichen "|", eine NICHT-Verknüpfung mit einem "-" (Minus) vor einem Wort. Anführungszeichen ermöglichen eine Phrasensuche.
Beispiele: (burg | schloss) -mittelalter, "berufliche bildung"

Das folgende Suchfeld wird hier nicht unterstützt: "Signatur / Strichcode".

Suchergebnisse einschränken oder erweitern

3 Treffer

Sortierung: 
  1. Stella, Juan M.
    In: Tecnología y ciencias del agua; Vol. 9 Núm. 2 (2018): marzo-abril; 234-245 ; 2007-2422 ; 0187-8336 ; 10.24850/j-tyca-2018-v9-n2, 2018
    academicJournal
  2. Stella, Juan M.
    In: Tecnología y ciencias del agua, 2018
    academicJournal
  3. Hernádez Suárez, César Augusto ; López Sarmiento, Danilo Alfonso ; et al.
    In: 3GPP. (2011). IEEE Approved Draft Standard For Information Technology. Local and metropolitan area networks. Specific requirements. Part 22: Cognitive wireless ran medium access control (MAC) and physical layer (PHY) specifications: Policies and procedures for operation in the TV bands IEEE computer society (vol. 2015). https://standards.ieee.org/standard/802_22-2019.html ; Abass, A. A. A., Mandayam, N. B. y Gajic, Z. (2017). An evolutionary game model for threat revocation in ephemeral networks. En 2017 51st Annual Conference on Information Sciences and Systems (pp. 1-5). IEEE. http://doi.org/10.1109/ CISS.2017.7926128 ; Abbas, N., Nasser, Y. y Ahmad, k. E. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, (1), 1-20. http://doi.org/10.1186/ s13638-015-0381-7 ; Abdulshahed, A. M., Longstaff, A. P. y Fletcher, S. (2015). The application of Anfis prediction models for thermal error compensation on CNC machine tools. Applied Soft Computing Journal, 27, 158-168. http://doi.org/10.1016/j. asoc.2014.11.01 ; Abonyi, J., Andersen, H., Nagy, L. y Szeifert, F. (1999). Inverse fuzzy-process-model based direct adaptive control. Mathematics and Computers in Simulation, 51(1-2), 119-132. http://doi.org/10.1016/s0378-4754(99)00142-1 ; Abramson, N. (1981). Teoría de la información y codificación (5.a ed.). Paraninfo. https:// eva.udelar.edu.uy/pluginfile.php/84635/mod_resource/content/0/Teoria_de_ la_Informacion_y_codificacion-Norman_Abramson_ebook-spanish_.pdf ; Adeel, A., Larijani, H. y Ahmadinia, A. (2014, 13-16 de mayo). Performance analysis of artificial neural network-based learning schemes for cognitive radio systems in LTE-UL [presentación en conferencia]. 2014 28th International Conference on Advanced Information Networking and Applications, Victoria, Estados Unidos. http://doi.org/10.1109/WAINA.2014.116 ; Ahmed, A., Boulahia, L. M. y Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys & Tutorials, 16(2), 776-811. http://doi.org/10.1109/ SURV.2013.082713.00141 ; Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J. y khan, S. U. (2016). Channel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823. http://doi. org/10.1109/COMST.2014.2363082 ; Akin, S. y Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350. http://doi. org/10.1109/TWC.2015.2503272 ; Akter, L., Natarajan, B. y Scoglio, C. (2008, 3-7 de agosto). Modeling and forecasting secondary user activity in cognitive radio networks [presentación en conferencia]. 17th International Conference on Computer Communications and Networks, St. Thomas, Islas Vírgenes, Estados Unidos. http://doi.org/10.1109/ICCCN.2008.ECP.50 ; Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2006). NeXt generation/ dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159. http://doi.org/10.1016/j.comnet.2006.05.001 ; Akyildiz, I. F., Lee, W.-Y., Vuran, M. C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40-48. http://doi.org/10.1109/MCOM.2008.4481339 ; Akyildiz, I. F., Lee, W.-Y. y Chowdhury, k. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836. http://doi.org/10.1016/j.adhoc.2009.01.001 ; Akyildiz, I. F. y Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory technical report. Georgia Institute of Technology. ; Al-Amidie, M., Al-Asadi, A., Micheas, A. C. e Islam, N. E. (2019). Spectrum sensing based on Bayesian generalised likelihood ratio for cognitive radio systems with multiple antennas. IET Communications, 13(3), 305-311. http://doi. org/10.1049/iet-com.2018.5276 ; Ali, A. y Hamouda, W. (2017). Advances on spectrum sensing for cognitive radio networks: Theory and applications. IEEE Communications Surveys & Tutorials, 19(2), 1277-1304. http://doi.org/10.1109/COMST.2016.2631080 ; Alias, D. M. y Ragesh, G. k. (2016, 23-25 de marzo). Cognitive radio networks: A survey [presentación en conferencia]. 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India. http://doi.org/10.1109/WiSPNET.2016.7566489 ; Almasaeid, H. M. y kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. En 2010 IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). IEEE. http://doi.org/10.1109/DYSPAN.2010.5457862 ; Alnwaimi, G., Arshad, k. y Moessner, k. (2011). Dynamic spectrum allocation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934. http://doi.org/10.1109/ LCOMM.2011.062911.110248 ; Alsarhan, A. y Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En 2009 Proceedings of 18th Internatonal Conference on Computer Communications and Networks (pp. 1-6). IEEE. http://doi. org/10.1109/ICCCN.2009.5235261 ; Amir, M., El-keyi, A. y Nafie, M. (2011). Constrained interference alignment and the spatial degrees of freedom of mimo cognitive networks. IEEE Transactions on Information Theory, 57(5), 2994-3004. http://doi.org/10.1109/TIT.2011.2119770 ; Amjad, M. F., Chatterjee, M. y Zou, C. C. (2016). Coexistence in heterogeneous spectrum through distributed correlated equilibrium in cognitive radio networks. Computer Networks, 98, 109-122. http://doi.org/10.1016/j.comnet.2016.01.016 ; Azarfar, A., Frigon, J.-F. y Sanso, B. (2012). Improving the reliability of wireless networks using cognitive radios. IEEE Communications Surveys & Tutorials, 14(2), second quarter, 338-354. http://doi.org/10.1109/SURV.2011.021111.00064 ; Baran, P. (1964). On distributed communications networks. IEEE Transactions on Communications Systems, 12(1), 1-9. http://doi.org/10.1109/TCOM.1964.1088883 ; Bhowmik, M. y Malathi, P. (2019). Spectrum sensing in cognitive radio using actor-critic neural network with krill herd-whale optimization algorithm. Wireless Personal Communications, 105(1), 335-354. http://doi.org/10.1007/s11277-018-6115-5 ; Bkassiny, M., Li, Y. y Jayaweera, S. k. (2013). A survey on machine-learning techniques in cognitive radios. IEEE Communications Surveys & Tutorials, 15(3), 11361159. http://doi.org/10.1109/SURV.2012.100412.00017 ; Bolstad, W. M. (2007). Introduction to Bayesian statistics (2.a ed.). John Wiley & Sons. ; Brik, V., Rozner, E., Banerjee, S. y Bahl, P. (2005). DSAP: A protocol for coordinated spectrum access. En 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 611-614). IEEE. http://doi.org/10.1109/ DYSPAN.2005.1542680 ; Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E. y Ronzani, D. (2018). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10). http://doi. org/10.1177/1550147717738192 ; Bütün, I., Talay, A. Ç., Altilar, D. T., khalid, M. y Sankar, R. (2010, 21-23 de abril). Impact of mobility prediction on the performance of cognitive radio networks [presentación en simposio]. 2010 Wireless Telecommunications Symposium (WTS), Tampa, Estados Unidos. http://doi.org/10.1109/WTS.2010.5479659 ; Büyüközkan, G., kahraman, C. y Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. International Journal of General Systems, 33(2-3), 259-280. http://doi.org/10.1080/03081070310001633581 ; Büyüközkan, G. y Çifçi, G. (2012). A combined fuzzy AHP and fuzzy Topsis based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354. https://doi.org/10.1016/j. eswa.2011.08.061 ; Byun, S. S., Balasingham, I. y Liang, X. (2008, 21-24 de septiembre). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency [presentación en conferencia]. 2008 IEEE 68th Vehicular Technology Conference, Calgary, Canadá. http://doi.org/10.1109/VETECF.2008.299 ; Cao, L. y Zheng, H. (2005). Distributed spectrum allocation via local bargaining. En 2005 Second Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (pp. 475-486). IEEE. http://doi.org/10.1109/ SAHCN.2005.1557100 ; Cardenas-Juarez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A. y Stevens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En 2016 International Conference on Electronics, Communications and Computers (pp. 25-31). IEEE. http://doi.org/10.1109/CONIELECOMP.2016.7438547 ; Chang, C.-C. y Lin, C.-J. (2013). Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), artículo 27. http://doi.org/10.1145/1961189.1961199 ; Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. http://doi.org/10.1016/03772217(95)00300-2 ; Chen, D., Zhang, Q. y Jia, W. (2008, 15-17 de mayo). Aggregation aware spectrum assignment in cognitive ad-hoc networks [presentación en conferencia]. 2008 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, Singapur, Singapur. http://doi.org/10.1109/CROWNCOM.2008.4562548 ; Chen, T., Zhang, H., Maggio, G. M. y Chlamtac, I. (2007). CogMesh: A clusterbased cognitive radio network. En 2007 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). IEEE. http://doi. org/10.1109/DYSPAN.2007.29 ; Chen, Y. y Oh, H.-S. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859. http://doi.org/10.1109/COMST.2014.2364316 ; Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En 2011 IEEE 13th International Conference on Communication Technology (pp. 161-164). IEEE. http://doi.org/10.1109/ICCT.2011.6157854 ; Cho, J. y Lee, J. (2013). Development of a new technology product evaluation model for assessing commercialization opportunities using Delphi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330. https://doi. org/10.1016/j.eswa.2013.03.038 ; Chou, C.-T., Shankar, S., kim, H. y Shin, k. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Communications, 25(3), 576588. http://doi.org/10.1109/JSAC.2007.070408 ; Choudhary, D. y Shankar, R. (2012). An Steep-fuzzy AHP-Topsis framework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521. https://doi.org/10.1016/j.energy.2012.03.010 ; Christian, I., Moh, S., Chung, I. y Lee, J. (2012). Spectrum mobility in cognitive radio networks. IEEE Communications Magazine, 50(6), 114-121. http://doi. org/10.1109/MCOM.2012.6211495 ; Cisco. (2017). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021 [white paper]. https://www.ramonmillan.com/documentos/bibliografia/ VisualNetworkingIndexGlobalMobileDataTrafficForecastUpdate2016_Cisco.pdf ; Cortés, J. (2011). Metodología para la implementación de tecnologías de la información y las comunicaciones TIC’s para soportar una estrategia de cadena de suministro esbelta [tesis de maestría, Universidad Nacional de Colombia]. BDigital. ; Cruz-Pol, S., Van Zee, L., kassim, N., Blackwell, W., Le Vine, D. y Scott, A. (2018). Spectrum management and the impact of RFI on science sensors. En 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (pp. 52-56). IEEE. http://doi.org/10.1109/MICRORAD.2018.843072 ; Csurgai-Horváth, L. y Bitó, J. (2011). Primary and secondary user activity models for cognitive wireless network. En Proceedings of the 11th International Conference on Telecommunications (pp. 189-194). IEEE. https://ieeexplore.ieee.org/document/5969948 ; Dadallage, S., Yi, C. y Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359. http://doi. org/10.1109/TVT.2015.2440412 ; Dadios, E. P. (ed.). (2012). Fuzzy logic: Algorithms, techniques and implementations. IntechOpen. ; Darak, S. J., Dhabu, S., Moy, C., Zhang, H., Palicot, J. y Vinod, A. P. (2015). Low complexity and efficient dynamic spectrum learning and tunable bandwidth access for heterogeneous decentralized cognitive radio networks. Digital Signal Processing, 37(1), 13-23. http://doi.org/10.1016/j.dsp.2014.12.001 ; Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2014). Efficient decentralized dynamic spectrum learning and access policy for multi-standard multi-user cognitive radio networks. En 2014 11th International Symposium on Wireless Communications Systems (ISWCS) (pp. 271-275). Institute of Electrical and Electronics Engineers. http://doi.org/10.1109/ISWCS.2014.693336 ; Darak, S. J., Zhang, H., Palicot, J. y Moy, C. (2017). Decision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networks. Digital Signal Processing, 60, 33-45. http://doi.org/10.1016/j.dsp.2016.08.014 ; Del Ser, J., Matinmikko, M., Gil-Lopez, S. y Mustonen, M. (2010). A novel harmony search based spectrum allocation technique for cognitive radio networks. En 2007 7th International Symposium on Wireless Communication Systems (pp. 233-237). IEEE. http://doi.org/10.1109/ISWCS.2010.5624341 ; Delgado, M. y Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610616. http://doi.org/10.1109/TLA.2016.743720 ; Deng, H., Huang, L., Yang, C. y Xu, H. (2018). Centralized spectrum leasing via cooperative SU assignment in cognitive radio networks. International Journal of Communication Systems, 31(13), artículo e3726. http://doi.org/10.1002/dac.3726 ; Dhamodharavadhani, S. (2015). A survey on clustering based routing protocols in mobile ad hoc networks. En 2015 International Conference on Soft-Computing and Networks Security (ICSNS) (pp. 1-6). IEEE. http://doi.org/10.1109/ ICSNS.2015.7292426 ; Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D. y Medley, M. J. (2010). Crosslayer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969-1979. http://doi. org/10.1109/TVT.2010.2045403 ; Do, C. T., Tran, N. H., Hong, C. S., Lee, S., Lee, J.-J. y Lee, W. (2013). A lightweight algorithm for probability-based spectrum decision scheme in multiple channels cognitive radio networks. IEEE Communications Letters, 17(3), 509-512. http:// doi.org/10.1109/LCOMM.2013.012313.122589 ; Du, k.-L. y Swamy, M. N. S. (2013). Neural networks and statistical learning. Springer. ; Duan, J. y Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Engineering, 11(3), 11-16. http://doi.org/10.4316/aece.2011.03002 ; Dunn, J. C. (1973). A fuzzy relative of the Isodata process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3(3), 32-57. http://doi. org/10.1080/01969727308546046 ; Fauzi bin Othman, M. y Yau, T. M. S. (2007). Neuro fuzzy classification and detection technique for bioinformatics problems. En First Asia International Conference on Modelling and Simulation: Asia Modelling Symposium (AMS 2007) (pp. 375-380). IEEE. http://doi.org/10.1109/AMS.2007.7 ; Federal Communications Commission (FCC). (2003a). Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies. https://www.fcc.gov/document/facilitating-opportunities-flexible-efficient-and-reliable-spectrum-1 ; Federal Communications Commission (FCC). (2003b). Notice of proposed rulemaking and order. https://web.cs.ucdavis.edu/~liu/289I/Material/FCC-03-322A1.pdf ; Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intelligence. Addison-Wesley. ; Flórez-López, R. y Fernández Fernández, J. M. (2008). Las redes neuronales artificiales: fundamentos teóricos y aplicaciones prácticas. Netbiblo. ; Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso CDMA [tesis de maestría, Universidad Distrital Francisco José de Caldas]. ; Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM. ; Fudenberg, D. y Tirole, J. (1991). Game theory. MIT Press. https://books.google. com.co/books?id=pFPHkwXro3QC ; Gallardo-Medina, J. R., Pineda-Rico, U. y Stevens-Navarro, E. (2009). Vikor method for vertical handoff decision in beyond 3G wireless networks. En 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. http://doi.org/10.1109/ICEEE.2009.539332 ; Gavrilovska, L., Atanasovski, V., Macaluso, I. y Dasilva, L. A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys & Tutorials, 15(4), 1761-1777. http://doi.org/10.1109/SURV.2013.030713.00113 ; Gers, F. A. y Schmidhuber, E. (2001). LSTM recurrent networks learn simple context-free and context-sensitive languages. IEEE Transactions on Neural Networks, 12(6), 1333-1340. http://doi.org/10.1109/72.963769 ; Giupponi, L. y Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En Proceedings of the Third International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi. org/10.1109/CROWNCOM.2008.4562535 ; Goldberg, D. E. y Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99. http://doi.org/10.1023/A:1022602019183 ; Goswami, M. M. (2017). AODV based adaptive distributed hybrid multipath routing for mobile AdHoc network. En 2017 International Conference on Inventive Communication and Computational Technologies (pp. 410-414). IEEE. http://doi. org/10.1109/ICICCT.2017.797523 ; Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. Springer. http://doi.org/10.1007/978-3-642-24797-2 ; Graves, A., Mohamed, A.-R. y Hinton, G. (2013). Speech recognition with deep recurrent neural networks. En 2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Proceedings (pp. 6645-6649). IEEE. http://doi. org/10.1109/ICASSP.2013.6638947 ; Graves, A. y Schmidhuber, J. (2005). Framewise phoneme classification with bidirec tional LSTM and other neural network architectures. Neural Networks, 18(5-6), 602-610. http://doi.org/10.1016/j.neunet.2005.06.042 ; Green, K. C., Armstrong, J. S. y Graefe, A. (2007). Methods to elicit forecasts from groups: Delphi and prediction markets compared. SSRN Electronic Journal, 8, 17- 20. http://doi.org/10.2139/ssrn.1153124 ; Han, J., Kamber, M. y Pei, J. (2012). Data mining: Concepts and techniques. Elsevier y Morgan Kauffman. ; Hasegawa, M., Hirai, H., Nagano, K., Harada, H. y Aihara, K. (2014). Optimiza tion for centralized and decentralized cognitive radio networks. Proceedings of the IEEE, 102(4), 574-584. http://doi.org/10.1109/JPROC.2014.2306255 ; Haykin, S. (1998). Neural networks: A comprehensive foundation (2.a ed.). Prentice Hall. ; He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., Morales Tirado, L., Neel, J., Zhao, Y., Reed, J. H. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technol ogy, 59(4), 1578-1592. http://doi.org/10.1109/TVT.2010.204 ; Hernández, C., Giral, D. y Páez, I. (2015a). Benchmarking of the performance of spectrum mobility models in cognitive radio networks. International Journal of Applied Engineering Research, 10(21), 42.189-42.196. ; Hernández, C., Giral, D. y Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Engineering and Technol ogy, 9(12), 1212-1215. https://publications.waset.org/10002921/hybrid-algo rithm-for-frequency-channel-selection-in-wi-fi-networks ; Hernández, C., Giral, D. y Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engineering and Technolo gy, 9(10), 679-682. https://publications.waset.org/10002749/mcdm-spectrum handover-models-for-cognitive-wireless-networks ; Hernández, C., Márquez, H. y Giral, D. (2017). Comparative evaluation of predic tion models for forecasting spectral opportunities. International Journal of Engineering and Technology, 9(5), 3775-3782. http://doi.org/10.21817/ijet/2017/ v9i5/170905055 ; Hernández, C., Páez, I. y Giral, D. (2015). Modelo AHP-Vikor para handoff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39. http://dx.doi.org/10.14483/ udistrital.jour.tecnura.2015.3.a02 ; Hernández, C., Páez, I. y Giral, D. (2017). Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva. Editorial UD. ; Hernández, C., Pedraza, L. F., Páez, I. y Rodríguez-Colina, E. (2015). Análisis de la movilidad espectral en redes de radio cognitiva. Información Tecnológica, 26(6), 169-186. http://dx.doi.org/10.4067/S0718-07642015000600018 ; Hernández, C., Pedraza, L. F. y Martínez, F. H. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. http://www.scielo. org.co/scielo.php?pid=S0123-921X2016000200006&script=sci_abstract&tlng=es ; Hernández, C., Pedraza, L. F. y Rodríguez-Colina, E. (2016). Fuzzy feedback algo rithm for the spectral handoff in cognitive radio networks. Revista Facultad de Ingeniería de la Universidad de Antioquia, (81), 47-62. http://doi.org/10.17533/ udea.redin.n81a05 ; Hernández, C., Salcedo, O. y Pedraza, L. F. (2009). An Arima model for forecasting Wi Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69. http://www. scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-5609200900020001 ; Hernández, C., Salgado, C., López, H. y Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. Eurasip Journal on Wireless Communications and Networking, 2015(1), artículo 216. http:// doi.org/10.1186/s13638-015-0445-8 ; Hernández, C., Salgado, C. y Salcedo, O. (2013). Performance of multivariable traffic model that allows estimating throughput mean values. Revista Facultad de Inge niería de la Universidad de Antioquia, (67), 52-62. http://www.scielo.org.co/scielo. php?script=sci_arttext&pid=S0120-62302013000200005 ; Hernández Sampieri, R., Fernández-Collado, C. y Baptista Lucio, P. (2006). Metodo logía de la investigación (4.a ed.). McGraw-H ; Hernandez-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R. y Pascoe Chalke, M. (2012). Cruam-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En 2012 IEEE Latin-American Conference on Communications. IEEE. http://doi.org/10.1109/LATINCOM.2012.6505997 ; Hochreiter, S. y Schmidhuber, J. (1997). Long short-term memory. Neural Computa tion, 9(8), 1735-1780. http://doi.org/10.1162/neco.1997.9.8.17 ; Hoven, N., Tandra, R. y Sahai, A. (2005). Some fundamental limits on cognitive ra dio. Wireless Foundations EECS. https://omidi.iut.ac.ir/SDR/2008/Projects/ Ataei-Game_Theory_Cognitive%20Radios/References/Some%20Fundamen tal%20Limits%20on%20Cognitive%20Radio.pdf ; Hsieh, W. W. (2009). Machine learning methods in the environmental sciences: Neural net works and kernels. Cambridge University Pres ; Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Springer. ; Iftikhar, A., Rauf, Z., Ahmed Khan, F., Shoaib Ali, M. y Kakar, M. (2019). Bayesian game-based user behavior analysis for spectrum mobility in cognitive radios. Phy sical Communication, 32, 200-208. https://doi.org/10.1016/j.phycom.2018.12.002 ; Institute of Electrical and Electronics Engineers. (2008). IEEE standard definitions and concepts for dynamic spectrum access: Terminology relating to emerging wireless networks, system functionality, and spectrum management (IEEE Standard 1900.1- 2008). https://standards.ieee.org/standard/1900_1-2008.htm ; Issariyakul, T., Pillutla, L. S. y Krishnamurthy, V. (2009). Tuning radio resource in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communi cations Magazine, 47(7), 57-63. http://doi.org/10.1109/MCOM.2009.5183 ; Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern Recognition Letters, 31(8), 651-666. http://doi.org/10.1016/j.patrec.2009.09.011 ; Jang, J.-S. R. (1993). Anfis: Adaptive-network-based fuzzy inference system. IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685. http://doi. org/10.1109/21.256541 ; Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, algorithms and real time reconfigurable antenna designs for autonomous, self-learning future cognitive radios. https://digitalrepository.unm.edu/ece_rpts/36/ ; Ji, Z. y Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access. Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88-94. http://doi.org/10.1109/MCOM.2007.358854 ; Jiang, C., Chen, Y. y Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Com munications, 13(4), 2176-2188. http://doi.org/10.1109/TWC.2014.02201 ; Joda, R. y Zorzi, M. (2015). Decentralized heuristic access policy design for two cognitive secondary users under a primary Type-I HARQ process. IEEE Transactions on Com munications, 63(11), 4037-4049. http://doi.org/10.1109/TCOMM.201 ; Kalkan, S. (2018). Special topics in deep learning. http://kovan.ceng.metu.edu.tr/~sinan/ DL/ ; Kanodia, V., Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportu nistic auto-rate media access protocol for ad hoc networks. En First International Conference on Broadband Networks (pp. 600-610). IEEE. https://ieeexplore.ieee. org/document/1363848?section=abstract ; Kasbekar, G. S. y Sarkar, S. (2010). Spectrum auction framework for access alloca tion in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6), 1841-1854. http://doi.org/10.1109/TNET.2010.2051453 ; Kaur, A., Kaur, A. y Sharma, S. (2018). PSO based multiobjective optimization for parameter adaptation in CR based IoTs. En 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). IEEE. http://doi. org/10.1109/CIACT.2018.8480298 ; Kaya, T. y Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy Vikor & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527. https://doi.org/10.1016/j.energy.2010.02.051 ; Keller, J. M., Liu, D. y Fogel, D. B. (2016). Fundamentals of computational intelligence: Neural networks, fuzzy systems, and evolutionary computation. IEEE y Wiley. http:// doi.org/10.1002/9781119214403 ; Kennedy, E. P., Condon, M. y Dowling, J. (2003). Torque-ripple minimisation in swit ched reluctance motors using a neuro-fuzzy control strategy. En Proceedings of the Iasted International Conference on Modelling and Simulation (pp. 106-109). Iasted. ; Kibria, M. R., Jamalipour, A. y Mirchandani, V. (2005). A location aware three step vertical handoff scheme for 4G/B3G networks. En Globecom ’05. IEEE Global Telecommunications Conference (vol. 5, pp. 2752-2756). IEEE. http://doi. org/10.1109/GLOCOM.2005.157826 ; Kim, H. y Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545. http://doi.org/10.1109/TMC.2007.70751 ; Kim, W., Kassler, A. J., Di Felice, M. y Gerla, M. (2010). Urban-X: Towards distri buted channel assignment in cognitive multi-radio mesh networks. En 2010 IFIP wireless days. IEEE. http://doi.org/10.1109/WD.2010.5657733 ; Kondareddy, Y. R., Agrawal, P. y Sivalingam, K. (2008). Cognitive radio network se tup without a common control channel. En 2008 IEEE Military Communications Conference. IEEE. http://doi.org/10.1109/MILCOM.2008.4753398 ; Kongsiriwattana, W. y Gardner-Stephen, P. (2017). Eliminating the high stand-by energy consumption of ad-hoc Wi-Fi. En 2017 IEEE Global Humanitarian Tech nology Conference. IEEE. http://doi.org/10.1109/GHTC.2017.8239229 ; Krishnamurthy, S., Thoppian, M., Venkatesan, S. y Prakash, R. (2005). Control channel based MAC-layer configuration, routing and situation awareness for cognitive radio networks. En 2005 IEEE Military Communications Conference (vol. 1, pp. 455-460). IEEE. http://doi.org/10.1109/MILCOM.2005.1605725 ; Krogstad, H. E. (2012). TMA 4180. Optimeringsteori karush-kuhn-tucker theorem. https://folk.ntnu.no/hek/Optimering2012/kkttheoremv2012.pdf ; Kumar, K., Prakash, A. y Tripathi, R. (2016). Spectrum handoff in cognitive ra dio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188. http://doi.org/10.1016/j.jnca.2015.10.008 ; Kwok, T.-Y. y Yeung, D.-Y. (1997). Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neu ral Networks, 8(3), 630-645. http://doi.org/10.1109/72.572102 ; Lahby, M., Leghris, C. y Abdellah, A. (2011). A hybrid approach for network se lection in heterogeneous multi-access environments. En 2011 4th IFIP Interna tional Conference on New Technologies, Mobility and Security. IEEE. http://doi. org/10.1109/NTMS.2011.5720658 ; Lee, W.-Y. y Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cogni tive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845- 3857. http://doi.org/10.1109/T-WC.2008.070391 ; Lee, W.-Y. y Akyildiz, I. F. (2011). A spectrum decision framework for cognitive ra dio networks. IEEE Transactions on Mobile Computing, 10(2), 161-174. http://doi. org/10.1109/TMC.2010.147 ; Lertsinsrubtavee, A. y Malouch, N. (2016). Hybrid spectrum sharing through adap tive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793. http://doi.org/10.1109/TMC.2016.2517619 ; Li, X. y Zekavat, S. A. (2008). Traffic pattern prediction and performance investiga tion for cognitive radio systems. En IEEE Wireless Communications and Network ing Conference (pp. 894-899). IEEE. http://doi.org/10.1109/WCNC.20 ; Li, Y., Shen, H. y Wang, M. (2016). Optimization spectrum decision parameters in CR using autonomously search algorithm. En 2016 IEEE 13th International Conference on Signal Processing (pp. 1146-1151). IEEE. http://doi.org/10.1109/ ICSP.2016.7878007 ; Liu, Y. y Tewfik, A. (2014). Primary traffic characterization and secondary transmis sions. IEEE Transactions on Wireless Communications, 13(6), 3003-3016. http:// doi.org/10.1109/TWC.2014.042914.130861 ; López Sarmiento, D. A. (2017). Implementación de un modelo predictor para la toma de decisiones en redes inalámbricas de radio cognitiva [tesis doctoral, Universidad Dis trital Francisco José de Caldas]. Repositorio de tesis doctoral del Doctorado en Ingeniería de la Universidad Distrital Francisco José de Caldas. https://docto radoingenieria.udistrital.edu.co/index.php/es/inicio/documentos/repositorio de-tesis-doctoral/item/488-implementacion-de-un-modelo-predictor-para-la toma-de-decisiones-en-redes-inalambricas-de-radio-cognitiva ; López Sarmiento, D. A., Rivas, E. y Gualdrón, O. E. (2015). Elementos funda mentales que componen la radio cognitiva y asignación de bandas espectra les. Información Tecnológica, 26(1), 23-40. http://dx.doi.org/10.4067/S0718- 07642015000100004 ; Ma, L., Shen, C.-C. y Ryu, B. (2007). Single-radio adaptive channel algorithm for spectrum agile wireless ad hoc networks. En 2007 2nd IEEE International Sympo sium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547-558). IEEE. http://doi.org/10.1109/DYSPAN.2007.78 ; Marinho, J. y Monteiro, E. (2012). Cognitive radio: Survey on communication proto cols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164. http://doi.org/10.1007/s11276-011-0392-1 ; Márquez, H., Hernández, C. y Giral, D. (2017). Channel availability prediction in cognitive radio networks using naive Bayes. Contemporary Engineering Sciences, 10(12), 593-605. http://doi.org/10.12988/ces.2017.7758 ; Masonta, M. T., Mzyece, M. y Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 15(3), 1088- 1107. http://doi.org/10.1109/SURV.2012.111412.0016 ; Masters, T. (1993). Practical neural networks recipes in C++. Morgan Kaufmann. ; Matinmikko, M., Del Ser, J., Rauma, T. y Mustonen, M. (2013). Fuzzy-logic ba sed framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184. http://doi. org/10.1109/JSAC.2013.131117 ; Matinmikko, M., Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mämmelä, A., Kiviranta, M. y Kautio, A. (2008). Cognitive radio: An intel ligent wireless communication system. VTT Technical Research Centre of Finland ; Meerschaert, M. M. (2013). Mathematical modeling (4.a ed.). Elsevier. http://doi.org/ https://doi.org/10.1016/C2010-0-66940-9 ; Mehbodniya, A., Kaleem, F., Yen, K. K. y Adachi, F. (2012). A fuzzy MADM ran king approach for vertical mobility in next generation hybrid networks. En IV International Congress on Ultra Modern Telecommunications and Control Systems 2012 (pp. 262-267). IEEE. http://doi.org/10.1109/ICUMT.2012.6459676 ; Melián-Gutiérrez, L., Zazo, S., Blanco-Murillo, J. L., Pérez-Álvarez, I., García Rodríguez, A. y Pérez-Díaz, B. (2013). HF spectrum activity prediction model based on HMM for cognitive radio applications. Physical Communication, 9, 199- 211. http://doi.org/10.1016/j.phycom.2012.09.004 ; Mir, U., Merghem-Boulahia, L., Esseghir, M. y Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En 2011 IEEE Consumer Communications and Networking Conference (pp. 658-663). IEEE. http:// doi.org/10.1109/CCNC.2011.5766563 ; Miranda, E. (2001). Improving subjective estimates using paired comparisons. IEEE Software, 18(1), 87-91. http://doi.org/10.1109/52.903173 ; Mishra, V., Tong, L. C., Chan, S. y Kumar, A. (2012). Energy aware spectrum de cision framework for cognitive radio networks. En 2012 International Sympo sium on Electronic System Design (ISED 2012) (pp. 309-313). IEEE. http://doi. org/10.1109/ISED.2012.65 ; Mitola III, J. (2000). Cognitive radio: An integrated agent architecture for software defined ra dio [tesis de doctorado, Royal Institute of Technology]. http://www.diva-portal. org/smash/get/diva2:8730/FULLTEXT01.pdf ; Neshat, M., Adeli, A., Masoumi, A. y Sargozae, M. (2011). A comparative study on Anfis and fuzzy expert system models for concrete mix design. International Journal of Computer Science Issues, 8(3), 196-210. https://www.researchgate.net/ publication/260979471_Comparative_Study_on_Anfis_and_Fuzzy_Expert_ System_Models_for_Concrete_Mix_Design ; Nisan, N., Roughgarden, T., Tardos, É. y Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge University Press. ; Ormond, O., Murphy, J. y Muntean, G.-M. (2006). Utility-based intelligent net work selection in beyond 3G systems. En 2006 IEEE International Conference on Communications (vol. 4, pp. 1831-1836). IEEE. http://doi.org/10.1109/ ICC.2006.254986 ; Oyewobi, S. S. y Hancke, G. P. (2017). A survey of cognitive radio handoff schemes, challenges and issues for industrial wireless sensor networks (CR-IWSN). Jour nal of Network and Computer Applications, 97, 140-156. http://doi.org/https:// doi.org/10.1016/j.jnca.2017.08.016 ; Ozger, M. y Akan, O. B. (2016). On the utilization of spectrum opportunity in cog nitive radio networks. IEEE Communications Letters, 20(1), 157-160. http://doi. org/10.1109/LCOMM.2015.2504103 ; Palangi, H., Ward, R. y Deng, L. (2016). Distributed compressive sensing: A deep learning approach. IEEE Transactions on Signal Processing, 64(17), 4504-4518. http://doi.org/10.1109/TSP.2016.2557301 ; Pankratev, D. A., Samsonov, A. A. y Stotckaia, A. D. (2019). Wireless data transfer technologies in a decentralized system. En Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus) (pp. 620-623). IEEE. http://doi.org/10.1109/EIConRus.2019.8656671 ; Patil, S. K. y Kant, R. (2014). A fuzzy AHP-Topsis framework for ranking the solu tions of Knowledge Management adoption in Supply Chain to overcome its ba rriers. Expert Systems with Applications, 41(2), 679-693. http://doi.org/10.1016/j. eswa.2013.07.093 ; Pattanayak, S., Venkateswaran, P. y Nandi, R. (2013). Artificial intelligence based model for channel status prediction: A new spectrum sensing technique for cog nitive radio. International Journal of Communications, Network and System Sciences, 6(3), 139-148. http://doi.org/10.4236/ijcns.2013.63017 ; Pedraza, L. F., Forero, F. y Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingeniería y Ciencia, 10(19), 127-143. http:// www.scielo.org.co/pdf/ince/v10n19/v10n19a07.pdf ; Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E. y Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá (1.a ed.). Editorial UD. ; Petrova, M., Mähönen, P. y Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machines. En 2017th International Symposium on Wireless Communication Systems (pp. 986-990). IEEE. http://doi.org/10.1109/ISWCS.2010.562450 ; Petter. (2013). Matlab mex support for Visual Studio 2013. MathWorks. https://www. mathworks.com/matlabcentral/fileexchange/44408-matlab-mex-support-for visual-studio-2013-and-mbuild ; Pham, C., Tran, N. H., Do, C. T., Moon, S. I. y Hong, C. S. (2014). Spectrum han doff model based on hidden Markov model in cognitive radio networks. En In ternational Conference on Information Networking (pp. 406-411). IEEE. http://net working.khu.ac.kr/layouts/net/publications/data/Spectrum%20Handoff%20 Model%20Based%20on%20Hidden%20Markov%20Model%20in%20Cogniti ve%20Radio%20Networks.pdf ; Pinto, L. R. M. y Correia, L. H. A. (2018). Analysis of machine learning algo rithms for spectrum decision in cognitive radios. En 2018 15th International Sym posium on Wireless Communication Systems (ISWCS) (pp. 1-6). IEEE. http://doi. org/10.1109/ISWCS.2018.849106 ; Pla, V., Vidal, J.-R., Martinez-Bauset, J. y Guijarro, L. (2010). Modeling and cha racterization of spectrum white spaces for underlay cognitive radio networks. En 2010 IEEE International Conference on Communications. IEEE. http://doi. org/10.1109/ICC.2010.5501788 ; Powell, V. y Lehe, L. (s.f.). Principal component analysis explained visually. https:// setosa.io/ev/principal-component-analysis/ ; Rahimian, N., Georghiades, C. N., Shakir, M. Z. y Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and system throughput perspec tives. IEEE Transactions on Wireless Communications, 13(1), 356-369. http://doi. org/10.1109/TWC.2013.120213.130658 ; Ramírez Pérez, C. y Ramos Ramos, V.-M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre Innovación y Desarrollo Tecnológico (Ciindet) (pp. 727-733). ; Ramírez Pérez, C. y Ramos Ramos, V.-M. (2013). On the effectiveness of multi-cri teria decision mechanisms for vertical handoff. En IEEE 27th International Confer ence on Advanced Information Networking and Applications (pp. 1157-1164). IEEE. http://doi.org/10.1109/AINA.2013.114 ; Ramzan, M. R., Nawaz, N., Ahmed, A., Naeem, M., Iqbal, M. y Anpalagan, A. (2017). Multi-objective optimization for spectrum sharing in cognitive radio net works: A review. Pervasive and Mobile Computing, 41, 106-131. http://doi.org/ https://doi.org/10.1016/j.pmcj.2017.07.01 ; Rizk, Y., Awad, M. y Tunstel, E. W. (2018). Decision making in multiagent systems: A survey. IEEE Transactions on Cognitive and Developmental Systems, 10(3), 514- 529. http://doi.org/10.1109/TCDS.2018.2840971 ; Rodriguez, A. B., Ramirez, L. J. y Chahuan, J. (2015). Nueva generación de heurísti cas para redes de fibra óptica WDM (wavelength división multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135-142. http://dx.doi.org/10.4067/ S0718-07642015000500017 ; Rodríguez-Colina, E., Ramirez, P. y Carrillo, C. E. (2011). Multiple attribute dyna mic spectrum decision making for cognitive radio networks. En 2011 8th Interna tional Conference on Wireless and Optical Communications Networks. IEEE. http:// doi.org/10.1109/WOCN.2011.587296 ; Roy, A., Midya, S., Majumder, K., Phadikar, S. y Dasgupta, A. (2017). Optimized secondary user selection for quality of service enhancement of two-tier multi user cognitive radio network: A game theoretic approach. Computer Networks, 123, 1-18. http://doi.org/10.1016/j.comnet.2017.05.002 ; Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. Euro pean Journal of Operational Research, 48(1), 9-26. http://doi.org/10.1016/0377- 2217(90)90057-I ; Sadanandan, A. (2011). CSVIMPORT. https://www.mathworks.com/matlabcen tral/fileexchange/23573-csvimpo ; Safavian, S. R. y Landgrebe, D. (1991). A survey of decision tree classifier methodo logy. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 660-674. http:// doi.org/10.1109/21.97458 ; Salcedo, D. (2006). Predicción del IBC utilizando redes neuronales con wavelets [tesis de pregrado, Universidad de los Andes (Venezuela)]. http://bdigital.ula.ve/stora ge/pdftesis/pregrado/tde_arquivos/8/TDE-2007-05-30T05:58:36Z-288/Publi co/Dulmar%20Salcedo.pdf ; Saleem, Y. y Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1-16. https://doi.org/10.1016/j.jnca.2014.04.001 ; Salgado, C. (2014). Algoritmo multivariable para la selección dinámica del canal de backup en redes de radio cognitiva basado en el método fuzzy analitical hierarchical process [tesis de maestría, Universidad Distrital Francisco José de Caldas]. ; Salgado, C., Márquez, H. y Gómez, V. (2016). Técnicas inteligentes en la asignación de espectro dinámica para redes inalámbricas cognitivas. Tecnura, 20(49), 135- 153. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a09 ; Salgado, C., Mora, S. y Giral, D. (2016). Collaborative algorithm for the spec trum allocation in distributed cognitive networks. International Journal of Engi neering and Technology, 8(5), 2288-2299. http://doi.org/10.21817/ijet/2016/ v8i5/160805091 ; Samui, P. (2015). Handbook of research on advanced computational techniques for simula tion-based engineering. IGI Globa ; Sarmiento, D. A. L., Rivas, E. y García, N. Y. G. (2016). Implementing a simulator of wireless cognitive radio network primary users. International Journal of Applied Engineering Research, 11(2), 967-975. ; Siddique, N. y Adeli, H. (2013). Computational intelligence: Synergies of fuzzy logic, neural networks and evolutionary computing. Wiley. http://doi. org/10.1002/9781118534823 ; Song, Q. y Jamalipour, A. (2005). A network selection mechanism for next genera tion networks. En 2005 IEEE International Conference on Communications (vol. 2, pp. 1418-1422). IEEE. http://doi.org/10.1109/ICC.2005.1494578 ; Soto, J., Castillo, O. y Soria, J. (2010). Chaotic time series prediction using ensem bles of Anfis. En O. Castillo, J. Kacprzyk y W. Pedrycz (eds.), Soft computing for intelligent control and mobile robotics (pp. 287-301). Springer. http://doi. org/10.1007/978-3-642-15534-5_18 ; Sriram, K. y Whitt, W. (1986). Characterizing superposition arrival processes in pac ket multiplexers for voice and data. IEEE Journal on Selected Areas in Communica tions, 4(6), 833-846. http://doi.org/10.1109/JSAC.1986.11464 ; Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U. y Acosta-Elias, J. (2012). Application of MADM method Vikor for vertical handoff in heterogeneous wi reless networks. Ieice Transactions on Communications, 95(2), 599-602. http://doi. org/10.1587/transcom.E95.B.599 ; Stevens-Navarro, E., Lin, Y. y Wong, V. W. S. (2008). An MDP-based vertical handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Ve hicular Technology, 57(2), 1243-1254. http://doi.org/10.1109/TVT.2007.907072 ; Stevens-Navarro, E., Martinez-Morales, J. D. y Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods forheterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548. https://core.ac.uk/download/pdf/27220545.pdf ; Stevens-Navarro, E. y Wong, V. W. S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En 2006 IEEE 63rd Ve hicular Technology Conference (vol. 2, pp. 947-951). IEEE. http://doi.org/10.1109/ VETECS.2004.138897 ; Sun, B., Feng, H., Chen, K. y Zhu, X. (2016). A deep learning framework of quanti zed compressed sensing for wireless neural recording. IEEE Access, 4, 5169-5178. http://doi.org/10.1109/ACCESS.2016.2604397 ; Sundermeyer, M., Ney, H. y Schlüter, R. (2015). From feedforward to recurrent LSTM neural networks for language modeling. IEEE/ACM Transactions on Au dio, Speech, and Language Processing, 23(3), 517-529. http://doi.org/10.1109/ TASLP.2015.2400218 ; Sutton, R. S. y Barto, A. G. (1998). Reinforcement learning: An introduction. IEEE Transactions on Neural Networks, 9(5), 1054. http://doi.org/10.1109/ TNN.1998.712192 ; Tabassam, A. A. y Suleman, M. U. (2012). Game theory in wireless and cogniti ve radio networks: Coexistence perspective. En 2012 IEEE Symposium on Wire less Technology and Applications (ISWTA 2012) (pp. 177-181). IEEE. http://doi. org/10.1109/ISWTA.2012.6373837 ; Tahir, M., Hadi Habaebi, M. e Islam, M. R. (2017). Novel distributed algorithm for coalition formation for enhanced spectrum sensing in cognitive radio networks. AEU: International Journal of Electronics and Communications, 77, 139-148. http:// doi.org/https://doi.org/10.1016/j.aeue.2017.04.033 ; Taj, M. I. y Akil, M. (2011). Cognitive radio spectrum evolution prediction using artificial neural networks based multivariate time series modelling. En 17th Eu ropean Wireless 2011. Sustainable Wireless Technologies. VDE. https://ieeexplore. ieee.org/document/5898018 ; Tanino, T., Tanaka, T. e Inuiguchi, M. (eds.). (2003). Multi-objective programming and goal programming: Theory and applications (vol. 21). Springer. ; Tragos, E. Z., Zeadally, S., Fragkiadakis, A. G. y Siris, V. A. (2013). Spectrum as signment in cognitive radio networks: A comprehensive survey. IEEE Com munications Surveys & Tutorials, 15(3), 1108-1135. http://doi.org/10.1109/ SURV.2012.121112.00047 ; Trigui, E., Esseghir, M. y Merghem-Boulahia, L. (2012). Multi-agent systems ne gotiation approach for handoff in mobile cognitive radio networks. En 2012 5th International Conference on New Technologies, Mobility and Security (NTMS 2012). IEEE. http://doi.org/10.1109/NTMS.2012.6208687 ; Tripathi, S., Upadhyay, A., Kotyan, S. y Yadav, S. (2019). Analysis and comparison of different fuzzy inference systems used in decision making for secondary users in cognitive radio network. Wireless Personal Communications, 104(3), 1175-1208. http://doi.org/10.1007/s11277-018-6075-9 ; Tsiropoulos, G. I., Dobre, O. A., Ahmed, M. H. y Baddour, K. E. (2016). Radio resource allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847. http://doi. org/10.1109/COMST.2014.2362796 ; Tumuluru, V. K., Wang, P. y Niyato, D. (2010). A neural network based spectrum prediction scheme for cognitive radio. En 2010 IEEE International Conference on Communications. IEEE. http://doi.org/10.1109/ICC.2010.5502348 ; Uyanik, G. S., Canberk, B. y Oktug, S. (2012). Predictive spectrum decision mecha nisms in cognitive radio networks. En 2012 IEEE Globecom Workshops. http:// doi.org/10.1109/GLOCOMW.2012.6477703 ; Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suarez, M. y Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analyses and obser vations. En 2010 Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications. IEEE. http://doi.org/10.4108/ ICST.CROWNCOM2010.922 ; Valero Verdú, S. y Senabre Blanes, C. (2013). Aplicación de un modelo de red neuronal no supervisado a la clasificación de consumidores eléctricos. Club Universitario. ; Vásquez, H., Hernández, C. y Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research, 10(21), 42.259-42.264. ; Vasudeva, A. y Sood, M. (2018). Survey on sybil attack defense mechanisms in wire less ad hoc networks. Journal of Network and Computer Applications, 120, 78-118. http://doi.org/https://doi.org/10.1016/j.jnca.2018.07.006 ; Veeriah, V., Zhuang, N. y Qi, G.-J. (2015). Differential recurrent neural networks for action recognition. En 2015 IEEE International Conference on Computer Vision (ICCV). IEEE. http://doi.org/10.1109/ICCV.2015.46 ; Velmurugan, T. (2014). Performance based analysis between k-Means and fuzzy C Means clustering algorithms for connection oriented telecommunication data. Applied Soft Computing, 19, 134-146. http://doi.org/10.1016/j.asoc.2014.02.011 ; Wang, B. y Liu, K. J. R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5-23. http://doi.org/10.1109/ JSTSP.2010.209321 ; Wang, C.-W. y Wang, L.-C. (2009). Modeling and analysis for proactive-decision spectrum handoff in cognitive radio networks. En 2009 IEEE International Confer ence on Communications. IEEE. http://doi.org/10.1109/ICC.2009.51991 ; Wang, J., Ghosh, M. y Challapali, K. (2011). Emerging cognitive radio applications: A survey. IEEE Communications Magazine, 49(3), 74-81. http://doi.org/10.1109/ MCOM.2011.5723803 ; Wang, L.-C., Wang, C.-W. y Adachi, F. (2011). Load-balancing spectrum decision for cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 757-769. http://doi.org/10.1109/JSAC.2011.110408 ; Wang, L.-C., Wang, C.-W. y Chang, C.-J. (2012). Modeling and analysis for spec trum handoffs in cognitive radio networks. IEEE Transactions on Mobile Comput ing, 11(9), 1499-1513. http://doi.org/10.1109/TMC.2011.15 ; Wang, P., Ansari, J., Petrova, M. y Mähönen, P. (2016). CogMAC+: A decentralized MAC protocol for opportunistic spectrum access in cognitive wireless networks. Computer Communications, 79, 22-36. http://doi.org/https://doi.org/10.1016/j. comcom.2015.09.016 ; Wang, X. Y., Wong, A. y Ho, P.-H. (2010). Dynamically optimized spatiotemporal prioritization for spectrum sensing in cooperative cognitive radio. Wireless Net works, 16(4), 889-901. http://doi.org/10.1007/s11276-009-0175 ; Wei, Q., Farkas, K., Prehofer, C., Mendes, P. y Plattner, B. (2006). Context-aware handover using active network technology. Computer Networks, 50(15), 2855- 2872. http://doi.org/10.1016/j.comnet.2005.11.002 ; Wei, Y., Li, X., Song, M. y Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En Interna tional Conference on Natural Computation (vol. 5, pp. 197-201). IEEE. http://doi. org/10.1109/ICNC.2008.504 ; Willkomm, D., Machiraju, S., Bolot, J. y Wolisz, A. (2008). Primary users in cellular networks: A large-scale measurement study. En 2008 IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). IEEE. http://doi. org/10.1109/DYSPAN.2008.48 ; Winston, O., Thomas, A. y Okelloodongo, W. (2013). Optimizing neural network for TV idle channel prediction in cognitive radio using particle swarm optimiza tion. En Fifth International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN 2013) (pp. 25-29). IEEE. http://doi.org/10.1109/ CICSYN.2013.68 ; Woods, W. A. (1986). Important issues in knowledge representation. Proceedings of the IEEE, 74(10), 1322-1334. http://doi.org/10.1109/PROC.1986.13634 ; Wooldridge, M. (2009). An introduction to multiagent systems. John Wiley & Sons. ; Wu, Y., Yang, Q., Liu, X. y Kwak, K. S. (2016). Delay-constrained optimal trans mission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications, 64(7), 2767-2779. http://doi.org/10.1109/ TCOMM.2016.2561936 ; Xenakis, D., Passas, N. y Merakos, L. (2014). Multi-parameter performance analy sis for decentralized cognitive radio networks. Wireless Networks, 20(4), 787-803. https://doi.org/10.1007/s11276-013-0635-4 ; Xing, X., Jing, T., Cheng, W., Huo, Y. y Cheng, X. (2013). Spectrum prediction in cognitive radio networks. IEEE Wireless Communications, 20(2), 90-96. http:// doi.org/10.1109/MWC.2013.6507399 ; Xing, X., Jing, T., Huo, Y., Li, H. y Cheng, X. (2013). Channel quality prediction based on Bayesian inference in cognitive radio networks. En 2013 Proceedings IEEE In focom (pp. 1465-1473). IEEE. http://doi.org/10.1109/INFCOM.2013.6566941 ; Xu, G. y Lu, Y. (2006). Channel and modulation selection based on support vec tor machines for cognitive radio. En 2006 IEEE International Conference on Wireless Communications, Networking and Mobile Computing. IEEE. http://doi. org/10.1109/WiCOM.2006.181 ; Yang, S.-F. y Jung-ShyrWu. (2008). A IEEE 802.21 handover design with QOS pro vision across WLAN and WMAN. En 2008 International Conference on Commu nications, Circuits and Systems (pp. 548-552). IEEE. http://doi.org/10.1109/ICC CAS.2008.4657833 ; Yang, S.-J. y Tseng, W.-C. (2013). Design novel weighted rating of multiple attri butes scheme to enhance handoff efficiency in heterogeneous wireless net works. Computer Communications, 36(14), 1498-1514. http://doi.org/10.1016/j. comcom.2013.06.005 ; Yao, Y., Hu, Q., Yu, H. y Grzymala-Busse, J. W. (eds.). (2015). Rough sets, fuzzy sets, data mining, and granular computing (vol. 2639). Tianjin, China: Springer. ; Yarkan, S. y Arslan, H. (2007). Binary time series approach to spectrum prediction for cognitive radio. En 2007 IEEE 66th Vehicular Technology Conference (pp. 1563- 1567). IEEE. http://doi.org/10.1109/VETECF.2007.332 ; Yifei, W., Yinglei, T., Li, W., Mei, S. y Xiaojun, W. (2013). QoS provisioning ener gy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101. http://doi. org/10.1109/CC.2013.6723882 ; Yonghui, C. (2010). Study of the Bayesian networks. En 2010 International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). IEEE. http://doi.org/10.1109/EDT.2010.5496612 ; Yoon, K. y Hwang, C.-L. (1995). Multiple attribute decision making: An introduction (vol. 104). Sage. ; Youssef, M. E., Nasim, S., Wasi, S., Khisal, U. y Khan, A. (2018). Efficient coopera tive spectrum detection in cognitive radio systems using wavelet fusion. En 2018 International Conference on Computing, Electronic and Electrical Engineering. IEEE. http://doi.org/10.1109/ICECUBE.2018.8610981 ; Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. http://doi. org/10.1016/S0019-9958(65)90241-X ; Zapata, J. A., Arango, M. D. y Adarme, W. (2012). Applying fuzzy extended analyti cal hierarchy (Feahp) for selecting logistics software. Ingeniería e Investigación, 32(1), 94-99. http://www.revistas.unal.edu.co/index.php/ingeinv/article/ view/28521/33581 ; Zapata Muñoz, D. F. y Anzola Rojas, C. (2016). Diseño de un algoritmo MAC para la asignación equitativa de espectro en redes inalámbricas de radio cognitiva [tesis de pregrado, Universidad Distrital Francisco José de Caldas]. RIUD. http://reposi tory.udistrital.edu.co/bitstream/11349/3754/1/AnzolaRojasCamilo2016.pdf ; Zhang, H., Nie, Y., Cheng, J., Leung, V. C. M. y Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communi cations, 16(2), 730-743. http://doi.org/10.1109/TWC.2016.2628821 ; Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous net works. En 2004 IEEE Wireless Communications and Networking Conference (vol. 4, pp. 653-658). IEEE. http://doi.org/10.1109/WCNC.2004.1311263; (2020)
    Buch
xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -