Zum Hauptinhalt springen

N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with Hybrid Structure as a Candidate for a Broad-Spectrum Antiepileptic Drug.

Kamiński, K ; Socała, K ; et al.
In: Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, Jg. 17 (2020), Heft 1, S. 309-328
Online academicJournal

Titel:
N-Benzyl-(2,5-dioxopyrrolidin-1-yl)propanamide (AS-1) with Hybrid Structure as a Candidate for a Broad-Spectrum Antiepileptic Drug.
Autor/in / Beteiligte Person: Kamiński, K ; Socała, K ; Zagaja, M ; Andres-Mach, M ; Abram, M ; Jakubiec, M ; Pieróg, M ; Nieoczym, D ; Rapacz, A ; Gawel, K ; Esguerra, CV ; Latacz, G ; Lubelska, A ; Szulczyk, B ; Szewczyk, A ; Łuszczki, JJ ; Wlaź, P
Link:
Zeitschrift: Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, Jg. 17 (2020), Heft 1, S. 309-328
Veröffentlichung: 2024- : [New York] : Elsevier Inc. on behalf of American Society for Experimental NeuroTherapeutics ; <i>Original Publication</i>: Orlando, FL : Elsevier, c2007-, 2020
Medientyp: academicJournal
ISSN: 1878-7479 (electronic)
DOI: 10.1007/s13311-019-00773-w
Schlagwort:
  • Animals
  • Behavior, Animal drug effects
  • Dose-Response Relationship, Drug
  • Epilepsy chemically induced
  • Ethosuximide chemistry
  • Lacosamide chemistry
  • Levetiracetam chemistry
  • Male
  • Mice
  • Pentylenetetrazole administration & dosage
  • Pyrrolidines administration & dosage
  • Pyrrolidines chemistry
  • Seizures chemically induced
  • Valproic Acid administration & dosage
  • Zebrafish
  • Anticonvulsants administration & dosage
  • Anticonvulsants chemistry
  • Epilepsy drug therapy
  • Seizures drug therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Neurotherapeutics] 2020 Jan; Vol. 17 (1), pp. 309-328.
  • MeSH Terms: Anticonvulsants / *administration & dosage ; Anticonvulsants / *chemistry ; Epilepsy / *drug therapy ; Seizures / *drug therapy ; Animals ; Behavior, Animal / drug effects ; Dose-Response Relationship, Drug ; Epilepsy / chemically induced ; Ethosuximide / chemistry ; Lacosamide / chemistry ; Levetiracetam / chemistry ; Male ; Mice ; Pentylenetetrazole / administration & dosage ; Pyrrolidines / administration & dosage ; Pyrrolidines / chemistry ; Seizures / chemically induced ; Valproic Acid / administration & dosage ; Zebrafish
  • References: Nadkarni S, LaJoie J, Devinsky O. Current treatments of epilepsy. Neurology 2005;64:S2–11. (PMID: 10.1212/WNL.64.12_suppl_3.S215994220) ; Fisher RS, Cross JH, French JA, et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017;58:522–530. (PMID: 10.1111/epi.136702827606028276060) ; Tang F, Hartz AMS, Bauer B. Drug-resistant epilepsy: multiple hypotheses, few answers. Front Neurol 2017;8:301. (PMID: 10.3389/fneur.2017.00301287298505498483) ; Salpekar JA, Mula M. Common psychiatric comorbidities in epilepsy: How big of a problem is it? Epilepsy Behav doi: https://doi.org/10.1016/j.yebeh.2018.07.023 . ; Thapar A, Kerr M, Harold G. Stress, anxiety, depression, and epilepsy: investigating the relationship between psychological factors and seizures. Epilepsy Behav 2009;14:134–140. (PMID: 10.1016/j.yebeh.2008.09.00418824131) ; Saletti PG, Ali I, Casillas-Espinosa PM, et al. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol Dis 2019;123:86–9. (PMID: 10.1016/j.nbd.2018.06.01729936231) ; Kaminski RM, Rogawski MA, Klitgaard H. The potential of antiseizure drugs and agents that act on novel molecular targets as antiepileptogenic treatments. Neurotherapeutics 2014;11:385–400. (PMID: 10.1007/s13311-014-0266-1246718703996125) ; Kamiński K, Rapacz A, Filipek B, et al. Design, synthesis and anticonvulsant activity of new hybrid compounds derived from N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)-propanamides and -butanamides. Bioorg Med Chem 2016;24:2938–2946. (PMID: 10.1016/j.bmc.2016.04.06627211245) ; Kamiński K, Zagaja M, Łuszczki JJ, et al. Design, synthesis, and anticonvulsant activity of new hybrid compounds derived from 2-(2,5-dioxopyrrolidin-1-yl)propanamides and 2-(2,5-dioxopyrrolidin-1-yl)butanamides. J Med Chem 2015;58:5274–5286. (PMID: 10.1021/acs.jmedchem.5b0057826052884) ; Kamiński K, Rapacz A, Łuszczki JJ, et al. Design, synthesis and biological evaluation of new hybrid anticonvulsants derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide derivatives. Bioorg Med Chem 2015;23:2548–2561. (PMID: 10.1016/j.bmc.2015.03.03825868743) ; Abram M, Zagaja M, Mogilski S, et al. Multifunctional Hybrid Compounds Derived from 2-(2,5-Dioxopyrrolidin-1-yl)-3-methoxypropanamides with Anticonvulsant and Antinociceptive Properties. J Med Chem 2017;60:8565–8579. (PMID: 10.1021/acs.jmedchem.7b0111428934547) ; Rapacz A, Kamiński K, Obniska J, et al. Analgesic, antiallodynic, and anticonvulsant activity of novel hybrid molecules derived from N-benzyl-2-(2,5-dioxopyrrolidin-1-yl)propanamide and 2-(2,5-dioxopyrrolidin-1-yl)butanamide in animal models of pain and epilepsy. Naunyn Schmiedebergs Arch Pharmacol 2017;390:567–579. (PMID: 10.1007/s00210-017-1358-3281883575411412) ; Socała K, Mogilski S, Pieróg M, et al. KA-11, a Novel Pyrrolidine-2,5-dione Derived Broad-Spectrum Anticonvulsant: Its Antiepileptogenic, Antinociceptive Properties and in Vitro Characterization. ACS Chem Neurosci 2019;10:636–648. (PMID: 10.1021/acschemneuro.8b0047630247871) ; Rapacz A, Głuch-Lutwin M, Mordyl B, et al. Evaluation of anticonvulsant and analgesic activity of new hybrid compounds derived from N-phenyl-2-(2,5-dioxopyrrolidin-1-yl)-propanamides and -butanamides. Epilepsy Res 2018;143:11–19. (PMID: 10.1016/j.eplepsyres.2018.03.02429631129) ; Talevi A. Multi-target pharmacology: possibilities and limitations of the “skeleton key approach” from a medicinal chemist perspective. Front Pharmacol 2015;6:205. (PMID: 10.3389/fphar.2015.00205264416614585027) ; Bansal Y, Silakari O. Multifunctional compounds: smart molecules for multifactorial diseases. Eur J Med Chem 2014;76:31–42. (PMID: 10.1016/j.ejmech.2014.01.06024565571) ; Metcalf CS, West PJ, Thomson KE, et al. Development and pharmacologic characterization of the rat 6 Hz model of partial seizures. Epilepsia 2017;58:1073–1084. (PMID: 10.1111/epi.13764284492185469205) ; Wilcox KS, Dixon-Salazar T, Sills GJ, et al. Issues related to development of new antiseizure treatments. Epilepsia 2013;54 (suppl 4):24–34. (PMID: 10.1111/epi.12296239098513947404) ; Morimoto K, Fahnestock M, Racine RJ. Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 2004;73:1–60. (PMID: 10.1016/j.pneurobio.2004.03.00915193778) ; Andres-Mach M, Haratym-Maj A, Zagaja M, et al. Additive interactions between 1-methyl-1,2,3,4-tetrahydroisoquinoline and clobazam in the mouse maximal electroshock-induced tonic seizure model—an isobolographic analysis for parallel dose-response relationship curves. Pharmacology 2014;93:172–177. (PMID: 10.1159/00036064024853974) ; Łuszczki JJ, Zagaja M, Miziak B, et al. Synergistic Interaction of Retigabine with Levetiracetam in the Mouse Maximal Electroshock-Induced Seizure Model: A Type II Isobolographic Analysis. Pharmacology 2015;96:11–15. (PMID: 10.1159/00043082226045245) ; Łuszczki JJ, Zagaja M, Miziak B, et al. Beneficial Combination of Lacosamide with Retigabine in Experimental Animals: An Isobolographic Analysis. Pharmacology 2018;101:22–28. (PMID: 10.1159/00048001928926841) ; Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972;32:281–294. (PMID: 10.1016/0013-4694(72)90177-04110397) ; Leclercq K, Kaminski RM. Genetic background of mice strongly influences treatment resistance in the 6 Hz seizure model. Epilepsia 2015;56:310–318. (PMID: 10.1111/epi.1289325524462) ; Litchfield JT, Jr., Wilcoxon F. A simplified method of evaluating dose-effect experiments. 1949;96(2):99–113. ; Łuszczki JJ. Interactions of tiagabine with ethosuximide in the mouse pentylenetetrazole-induced seizure model: an isobolographic analysis for non-parallel dose-response relationship curves. Naunyn Schmiedebergs Arch Pharmacol 2008;378:483–492. (PMID: 10.1007/s00210-008-0305-818566800) ; Andres-Mach M, Zolkowska D, Barcicka-Klosowska B, et al. Effect of ACEA—a selective cannabinoid CB1 receptor agonist on the protective action of different antiepileptic drugs in the mouse pentylenetetrazole-induced seizure model. Prog Neuropsychopharmacol Biol Psychiatry 2012;39:301–309. (PMID: 10.1016/j.pnpbp.2012.07.00122789660) ; Łuszczki JJ, Czuczwar SJ. Isobolographic characterization of interactions between vigabatrin and tiagabine in two experimental models of epilepsy. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:529–538. (PMID: 10.1016/j.pnpbp.2006.11.02017204358) ; Łuszczki JJ. Isobolographic analysis of interaction between drugs with nonparallel dose-response relationship curves: a practical application. Naunyn Schmiedebergs Arch Pharmacol 2007;375:105–114. (PMID: 10.1007/s00210-007-0144-z17333129) ; Tallarida RJ. Drug synergism and dose – effect data analysis. Chapman & Hall/CRC, Boca Raton, USA, 2000. (PMID: 10.1201/9781420036107) ; Boissier JR, Tardy J, Diverres JC. Une nouvelle methode simple pour explorer l’action ‘tranquilistante’: le test de la cheminee. Med Exp (Basel) 1960;3:81–84. (PMID: 10.1159/000134913) ; Zagaja M, Andres-Mach M, Patrzylas P, et al. Influence of xanthotoxin (8-methoxypsoralen) on the anticonvulsant activity of various novel antiepileptic drugs against maximal electroshock-induced seizures in mice. Fitoterapia 2016;115:86–91. (PMID: 10.1016/j.fitote.2016.09.0202770266827702668) ; Afrikanova T, Serruys AS, Buenafe OE, et al. Validation of the zebrafish pentylenetetrazol seizure model: locomotor versus electrographic responses to antiepileptic drugs. PLoS One 2013;8:e54166. (PMID: 10.1371/journal.pone.00541662334209723342097) ; Nieoczym D, Socała K, Gaweł K, et al. Anticonvulsant activity of pterostilbene in zebrafish and mouse acute seizure tests. Neurochem Res 2019;44:1043–1055. (PMID: 10.1007/s11064-019-02735-23068916230689162) ; Brown GB. 3H-batrachotoxinin-A benzoate binding to voltage-sensitive sodium channels: inhibition by the channel blockers tetrodotoxin and saxitoxin. J Neurosci 1986;6:2064–2070. (PMID: 10.1523/JNEUROSCI.06-07-02064.198624264262426426) ; Gould RJ, Murphy KM, Snyder SH. [3H]nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Natl Acad Sci U S A 1982;79:3656–3660. (PMID: 10.1073/pnas.79.11.365662853576285357) ; Reynolds IJ, Snowman AM, Snyder SH. (-)-[3H] desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and skeletal muscle membranes: differentiation by temperature and dihydropyridines. J Pharmacol Exp Ther 1986;237:731–738. (PMID: 3012067) ; Schoemaker H, Langer SZ. [3H]diltiazem binding to calcium channel antagonists recognition sites in rat cerebral cortex. Eur J Pharmacol 1985;111:273–277. (PMID: 10.1016/0014-2999(85)90768-X) ; Wagner JA, Snowman AM, Biswas A, et al. Omega-conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization. J Neurosci 1988;8:3354–3359. (PMID: 10.1523/JNEUROSCI.08-09-03354.198865694236569423) ; Sills MA, Fagg G, Pozza M, et al. [3H]CGP 39653: a new N-methyl-D-aspartate antagonist radioligand with low nanomolar affinity in rat brain. Eur J Pharmacol 1991;192:19–24. (PMID: 10.1016/0014-2999(91)90063-V1674916) ; Wang XK. Pharmacological study on recombinant human GABA-A receptor complex containing alpha5 (leucine155 to valine) combined with beta3gamma2s subunits. Acta Pharmacol Sin 2001;22:521–523. (PMID: 11747758) ; Shank RP, Baldy WJ, Mattucci LC, et al. Ion and temperature effects on the binding of gamma-aminobutyrate to its receptors and the high-affinity transport system. J Neurochem 1990;54:2007–2015. (PMID: 10.1111/j.1471-4159.1990.tb04905.x2159983) ; Huang XP, Mangano T, Hufeisen S, et al. Identification of human Ether-a-go-go related gene modulators by three screening platforms in an academic drug-discovery setting. Assay Drug Dev Technol 2010;8:727–742. (PMID: 10.1089/adt.2010.0331211586873002179) ; Phelps PT, Anthes JC, Correll CC. Cloning and functional characterization of dog transient receptor potential vanilloid receptor-1 (TRPV1). Eur J Pharmacol 2005;513:57–66. (PMID: 10.1016/j.ejphar.2005.02.04515878709) ; Felder CC, Joyce KE, Briley EM, et al. Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors. Mol Pharmacol 1995;48:443–450. (PMID: 7565624) ; Szulczyk B, Nurowska E. Valproic acid inhibits TTX-resistant sodium currents in prefrontal cortex pyramidal neurons. Biochem Biophys Res Commun 2017;491:291–295. (PMID: 10.1016/j.bbrc.2017.07.10928739252) ; Latacz G, Hogendorf AS, Hogendorf A, et al. Search for a 5-CT alternative. In vitro and in vivo evaluation of novel pharmacological tools: 3-(1-alkyl-1H-imidazol-5-yl)-1H-indole-5-carboxamides, low-basicity 5-HT7 receptor agonists. Medchemcomm 2018;9:1882–1890. (PMID: 10.1039/C8MD00313K305687566256855) ; Barton ME, Klein BD, Wolf HH, et al. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res 2001;47:217–227. (PMID: 10.1016/S0920-1211(01)00302-311738929) ; Löscher W. Preclinical assessment of proconvulsant drug activity and its relevance for predicting adverse events in humans. Eur J Pharmacol 2009;610:1–11. (PMID: 10.1016/j.ejphar.2009.03.02519292981) ; Samokhina E, Samokhin A. Neuropathological profile of the pentylenetetrazol (PTZ) kindling model. Int J Neurosci 2018;128:1086–1096. (PMID: 10.1080/00207454.2018.148106429792126) ; Hansen SL, Sperling BB, Sanchez C. Anticonvulsant and antiepileptogenic effects of GABAA receptor ligands in pentylenetetrazole-kindled mice. Prog Neuropsychopharmacol Biol Psychiatry 2004;28:105–113. (PMID: 10.1016/j.pnpbp.2003.09.02614687864) ; Tokudome K, Okumura T, Shimizu S, et al. Synaptic vesicle glycoprotein 2A (SV2A) regulates kindling epileptogenesis via GABAergic neurotransmission. Sci Rep 2016;6:27420. (PMID: 10.1038/srep27420272657814893657) ; Kohling R, Straub H, Speckmann EJ. Differential involvement of L-type calcium channels in epileptogenesis of rat hippocampal slices during ontogenesis. Neurobiol Dis 2000;7:471–482. (PMID: 10.1006/nbdi.2000.030010964616) ; Koshal P, Kumar P. Neurochemical modulation involved in the beneficial effect of liraglutide, GLP-1 agonist on PTZ kindling epilepsy-induced comorbidities in mice. Mol Cell Biochem 2016;415:77–87. (PMID: 10.1007/s11010-016-2678-126965494) ; Zhu X, Dong J, Han B, et al. Neuronal Nitric Oxide Synthase Contributes to PTZ Kindling-Induced Cognitive Impairment and Depressive-Like Behavior. Front Behav Neurosci 2017;11:203. (PMID: 10.3389/fnbeh.2017.00203290936705651248) ; Azim MS, Agarwal NB, Vohora D. Effects of agomelatine on pentylenetetrazole-induced kindling, kindling-associated oxidative stress, and behavioral despair in mice and modulation of its actions by luzindole and 1-(m-chlorophenyl) piperazine. Epilepsy Behav 2017;72:140–144. (PMID: 10.1016/j.yebeh.2017.03.01928578215) ; Schwabe K, Ebert U. Animal models of epilepsy. In: Animal models of neuropsychiatric diseases. Imperial College Press, 2006, pp. 75–117. ; Łuszczki JJ, Andres-Mach M, Barcicka-Klosowska B, et al. Effects of WIN 55,212-2 mesylate (a synthetic cannabinoid) on the protective action of clonazepam, ethosuximide, phenobarbital and valproate against pentylenetetrazole-induced clonic seizures in mice. Prog Neuropsychopharmacol Biol Psychiatry 2011;35:1870–1876. (PMID: 10.1016/j.pnpbp.2011.07.00121777642) ; Löscher W, Hönack D, Fassbender CP, et al. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. III. Pentylenetetrazole seizure models. Epilepsy Res 1991;8:171–189. (PMID: 10.1016/0920-1211(91)90062-K1907909) ; Löscher W, Schmidt D. Modern antiepileptic drug development has failed to deliver: ways out of the current dilemma. Epilepsia 2011;52:657–678. (PMID: 10.1111/j.1528-1167.2011.03024.x) ; Whitlow RD, Sacher A, Loo DD, et al. The anticonvulsant valproate increases the turnover rate of gamma-aminobutyric acid transporters. J Biol Chem 2003;278:17716–17726. (PMID: 10.1074/jbc.M20758220012595533) ; Lee WS, Limmroth V, Ayata C, et al. Peripheral GABAA receptor-mediated effects of sodium valproate on dural plasma protein extravasation to substance P and trigeminal stimulation. Br J Pharmacol 1995;116:1661–1667. (PMID: 10.1111/j.1476-5381.1995.tb16388.x85642341908914) ; Baraban SC. Emerging epilepsy models: insights from mice, flies, worms and fish. Curr Opin Neurol 2007;20:164–168. (PMID: 10.1097/WCO.0b013e328042bae0173514864362672) ; Orellana-Paucar AM, Afrikanova T, Thomas J, et al. Insights from zebrafish and mouse models on the activity and safety of ar-turmerone as a potential drug candidate for the treatment of epilepsy. PLoS One 2013;8:e81634. (PMID: 10.1371/journal.pone.0081634243491013862488) ; Copmans D, Rateb M, Tabudravu JN, et al. Zebrafish-Based Discovery of Antiseizure Compounds from the Red Sea: Pseurotin A2 and Azaspirofuran A. ACS Chem Neurosci 2018;9:1652–1662. (PMID: 10.1021/acschemneuro.8b0006029672015) ; Baxendale S, Holdsworth CJ, Meza Santoscoy PL, et al. Identification of compounds with anti-convulsant properties in a zebrafish model of epileptic seizures. Dis Model Mech 2012;5:773–784. (PMID: 10.1242/dmm.010090227304553484860) ; Buenafe OE, Orellana-Paucar A, Maes J, et al. Tanshinone IIA exhibits anticonvulsant activity in zebrafish and mouse seizure models. ACS Chem Neurosci 2013; 4:1479–87. (PMID: 10.1021/cn400140e239370663837379) ; Orellana-Paucar AM, Serruys AS, Afrikanova T, et al. Anticonvulsant activity of bisabolene sesquiterpenoids of Curcuma longa in zebrafish and mouse seizure models. Epilepsy Behav 2012;24:14–22. (PMID: 10.1016/j.yebeh.2012.02.02022483646) ; Gaston TE, Friedman D. Pharmacology of cannabinoids in the treatment of epilepsy. Epilepsy Behav 2017;70:313–318. (PMID: 10.1016/j.yebeh.2016.11.01628087250) ; Iannotti FA, Hill CL, Leo A, et al. Nonpsychotropic plant cannabinoids, cannabidivarin (CBDV) and cannabidiol (CBD), activate and desensitize Transient Receptor Potential Vanilloid 1 (TRPV1) channels in vitro: potential for the treatment of neuronal hyperexcitability. ACS Chem Neurosci 2014;5:1131–1141. (PMID: 10.1021/cn500052425029033) ; Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the dravet Syndrome. N Engl J Med 2017;376:2011–2020. (PMID: 10.1056/NEJMoa161161828538134) ; Huizenga MN, Sepulveda-Rodriguez A, Forcelli PA. Preclinical safety and efficacy of cannabidivarin for early life seizures. Neuropharmacology 2019;148:189–198. (PMID: 10.1016/j.neuropharm.2019.01.00230633929) ; Taylor CP, Angelotti T, Fauman E. Pharmacology and mechanism of action of pregabalin: the calcium channel alpha2-delta (alpha2-delta) subunit as a target for antiepileptic drug discovery. Epilepsy Res 2007;73:137–150. (PMID: 10.1016/j.eplepsyres.2006.09.00817126531) ; Matsuzawa R, Fujiwara T, Nemoto K, et al. Presynaptic inhibitory actions of pregabalin on excitatory transmission in superficial dorsal horn of mouse spinal cord: further characterization of presynaptic mechanisms. Neurosci Lett 2014;558:186–191. (PMID: 10.1016/j.neulet.2013.11.01724269977) ; Hanada T, Hashizume Y, Tokuhara N, et al. Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 2011;52:1331–1340. (PMID: 10.1111/j.1528-1167.2011.03109.x2163523621635236) ; Kato AS, Witkin JM. Auxiliary subunits of AMPA receptors: The discovery of a forebrain-selective antagonist, LY3130481/CERC-611. Biochem Pharmacol 2018;147:191–200. (PMID: 10.1016/j.bcp.2017.09.0152898759428987594) ; Witkin JM, Li J, Gilmour G, et al. Electroencephalographic, cognitive, and neurochemical effects of LY3130481 (CERC-611), a selective antagonist of TARP-gamma8-associated AMPA receptors. Neuropharmacology 2017;126:257–270. (PMID: 10.1016/j.neuropharm.2017.07.0282875705028757050) ; Kato AS, Burris KD, Gardinier KM, et al. Forebrain-selective AMPA-receptor antagonism guided by TARP gamma-8 as an antiepileptic mechanism. Nat Med 2016;22:1496–1501. (PMID: 10.1038/nm.42212782060327820603) ; Kerns E, Di L. Drug-like properties—concepts, structure design and methods: from ADME to toxicity optimization. 2nd Edition. Academic Press Cambtidge, 2016.
  • Contributed Indexing: Keywords: ADME-Tox properties; Drug-resistant epilepsy; PTZ-kindling model of epilepsy; electrophysiology; isobolographic studies; zebrafish
  • Substance Nomenclature: 0 (Anticonvulsants) ; 0 (Pyrrolidines) ; 44YRR34555 (Levetiracetam) ; 563KS2PQY5 (Lacosamide) ; 5SEH9X1D1D (Ethosuximide) ; 614OI1Z5WI (Valproic Acid) ; WM5Z385K7T (Pentylenetetrazole)
  • Entry Date(s): Date Created: 20190906 Date Completed: 20210204 Latest Revision: 20240204
  • Update Code: 20240205
  • PubMed Central ID: PMC7007424

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -