Zum Hauptinhalt springen

State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala.

Lutas, A ; Kucukdereli, H ; et al.
In: Nature neuroscience, Jg. 22 (2019-11-01), Heft 11, S. 1820-1833
Online academicJournal

Titel:
State-specific gating of salient cues by midbrain dopaminergic input to basal amygdala.
Autor/in / Beteiligte Person: Lutas, A ; Kucukdereli, H ; Alturkistani, O ; Carty, C ; Sugden, AU ; Fernando, K ; Diaz, V ; Flores-Maldonado, V ; Andermann, ML
Link:
Zeitschrift: Nature neuroscience, Jg. 22 (2019-11-01), Heft 11, S. 1820-1833
Veröffentlichung: <2002->: New York, NY : Nature Publishing Group ; <i>Original Publication</i>: New York, NY : Nature America Inc., c1998-, 2019
Medientyp: academicJournal
ISSN: 1546-1726 (electronic)
DOI: 10.1038/s41593-019-0506-0
Schlagwort:
  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2
  • Cues
  • Dopamine Plasma Membrane Transport Proteins genetics
  • Female
  • Male
  • Mice
  • Mice, Transgenic
  • Neural Pathways physiology
  • Photic Stimulation
  • Punishment
  • Reward
  • Visual Perception physiology
  • Amygdala physiology
  • Dopaminergic Neurons physiology
  • Sensory Gating physiology
  • Ventral Tegmental Area physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Neurosci] 2019 Nov; Vol. 22 (11), pp. 1820-1833. <i>Date of Electronic Publication: </i>2019 Oct 14.
  • MeSH Terms: Amygdala / *physiology ; Dopaminergic Neurons / *physiology ; Sensory Gating / *physiology ; Ventral Tegmental Area / *physiology ; Animals ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Cues ; Dopamine Plasma Membrane Transport Proteins / genetics ; Female ; Male ; Mice ; Mice, Transgenic ; Neural Pathways / physiology ; Photic Stimulation ; Punishment ; Reward ; Visual Perception / physiology
  • References: Burgess, C. R., Livneh, Y., Ramesh, R. N. & Andermann, M. L. Gating of visual processing by physiological need. Curr. Opin. Neurobiol. 49, 16–23 (2018). (PMID: 29125986) ; Johnson, A. W., Gallagher, M. & Holland, P. C. The basolateral amygdala is critical to the expression of pavlovian and instrumental outcome-specific reinforcer devaluation effects. J. Neurosci. 29, 696–704 (2009). (PMID: 191582963230882) ; Tye, K. M. & Janak, P. H. Amygdala neurons differentially encode motivation and reinforcement. J. Neurosci. 27, 3937–3945 (2007). (PMID: 174289676672525) ; O’Neill, P.-K., Gore, F. & Salzman, C. D. Basolateral amygdala circuitry in positive and negative valence. Curr. Opin. Neurobiol. 49, 175–183 (2018). (PMID: 295255746138049) ; Grewe, B. F. et al. Neural ensemble dynamics underlying a long-term associative memory. Nature 543, 670–675 (2017). (PMID: 2832975728329757) ; Johansen, J. P. et al. Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation. Proc. Natl Acad. Sci. USA 111, E5584–E5592 (2014). (PMID: 25489081) ; de Oliveira, A. R. et al. Conditioned fear is modulated by D2 receptor pathway connecting the ventral tegmental area and basolateral amygdala. Neurobiol. Learn. Mem. 95, 37–45 (2011). (PMID: 20955808) ; Fadok, J. P., Dickerson, T. M. K. & Palmiter, R. D. Dopamine is necessary for cue-dependent fear conditioning. J. Neurosci. 29, 11089–11097 (2009). (PMID: 197411152759996) ; Esber, G. R. et al. Attention-related Pearce–Kaye–Hall signals in basolateral amygdala require the midbrain dopaminergic system. Biol. Psychiatry 72, 1012–1019 (2012). (PMID: 227631853465645) ; Bissière, S., Humeau, Y. & Lüthi, A. Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat. Neurosci. 6, 587–592 (2003). (PMID: 12740581) ; Yu, K. et al. The central amygdala controls learning in the lateral amygdala. Nat. Neurosci. 20, 1680–1685 (2017). (PMID: 291842025755715) ; Tye, K. M. et al. Methylphenidate facilitates learning-induced amygdala plasticity. Nat. Neurosci. 13, 475–481 (2010). (PMID: 202085272988577) ; Menegas, W., Akiti, K., Amo, R., Uchida, N. & Watabe-Uchida, M. Dopamine neurons projecting to the posterior striatum reinforce avoidance of threatening stimuli. Nat. Neurosci. 1, 1421–1430 (2018). ; Menegas, W., Babayan, B. M., Uchida, N. & Watabe-Uchida, M. Opposite initialization to novel cues in dopamine signaling in ventral and posterior striatum in mice. eLife 6, e21886 (2017). (PMID: 280549195271609) ; Groessl, F. et al. Dorsal tegmental dopamine neurons gate associative learning of fear. Nat. Neurosci. 21, 952–962 (2018). (PMID: 29950668) ; Lammel, S., Lim, B. K. & Malenka, R. C. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76, 351–359 (2014). Pt B. (PMID: 23578393) ; Ehrlich, I. et al. Amygdala inhibitory circuits and the control of fear memory. Neuron 62, 757–771 (2009). (PMID: 19555645) ; Calhoon, G. G. et al. Acute food deprivation rapidly modifies valence-coding microcircuits in the amygdala. Preprint at bioRxiv https://doi.org/10.1101/285189 (2018). ; Zhang, X. & Li, B. Population coding of valence in the basolateral amygdala. Nature Commun. 9, 5195 (2018). ; Burgess, C. R. et al. Hunger-dependent enhancement of food cue responses in mouse postrhinal cortex and lateral amygdala. Neuron 91, 1154–1169 (2016). (PMID: 275234265017916) ; Ramesh, R. N., Burgess, C. R., Sugden, A. U., Gyetvan, M. & Andermann, M. L. Intermingled ensembles in visual association cortex encode stimulus identity or predicted outcome. Neuron 100, 900–915.e9 (2018). (PMID: 30318413) ; Livneh, Y. et al. Homeostatic circuits selectively gate food cue responses in insular cortex. Nature 546, 611–616 (2017). (PMID: 286142995577930) ; Scibilia, R. J., Lachowicz, J. E. & Kilts, C. D. Topographic nonoverlapping distribution of D1 and D2 dopamine receptors in the amygdaloid nuclear complex of the rat brain. Synapse 11, 146–154 (1992). (PMID: 1385664) ; Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445, 168–176 (2006). (PMID: 17151600) ; Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997). (PMID: 9054347) ; Cohen, J. Y., Haesler, S., Vong, L., Lowell, B. B. & Uchida, N. Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482, 85–88 (2012). (PMID: 222585083271183) ; Pearce, J. M. & Hall, G. A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol. Rev. 87, 532–552 (1980). (PMID: 7443916) ; Kim, J., Pignatelli, M., Xu, S., Itohara, S. & Tonegawa, S. Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19, 1636–1646 (2016). (PMID: 277498265493320) ; Beyeler, A. et al. Organization of valence-encoding and projection-defined neurons in the basolateral amygdala. Cell Rep. 22, 905–918 (2018). (PMID: 293861335891824) ; Wang, L. et al. The coding of valence and identity in the mammalian taste system. Nature 558, 127–131 (2018). (PMID: 298491486201270) ; Parker, N. F. et al. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target. Nat. Neurosci. 19, 845–854 (2016). (PMID: 271109174882228) ; Poulin, J.-F. et al. Mapping projections of molecularly defined dopamine neuron subtypes using intersectional genetic approaches. Nat. Neurosci. 21, 1260–1271 (2018). (PMID: 301047326342021) ; Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018). (PMID: 298535556287765) ; Howe, M. W. & Dombeck, D. A. Rapid signalling in distinct dopaminergic axons during locomotion and reward. Nature 535, 505–510 (2016). (PMID: 49708794970879) ; Beyeler, A. et al. Divergent routing of positive and negative information from the amygdala during memory retrieval. Neuron 90, 348–361 (2016). (PMID: 270414994854303) ; Roesch, M. R., Esber, G. R., Li, J., Daw, N. D. & Schoenbaum, G. Surprise! Neural correlates of Pearce–Hall and Rescorla–Wagner coexist within the brain. Eur. J. Neurosci. 35, 1190–1200 (2012). (PMID: 224870473325511) ; Roesch, M. R., Calu, D. J., Esber, G. R. & Schoenbaum, G. Neural correlates of variations in event processing during learning in basolateral amygdala. J. Neurosci. 30, 2464–2471 (2010). (PMID: 201643302838173) ; Tye, K. M., Cone, J. J., Schairer, W. W. & Janak, P. H. Amygdala neural encoding of the absence of reward during extinction. J. Neurosci. 30, 116–125 (2010). (PMID: 200538946632518) ; Herry, C. et al. Switching on and off fear by distinct neuronal circuits. Nature 454, 600–606 (2008). (PMID: 1861501518615015) ; Young, A. M. & Rees, K. R. Dopamine release in the amygdaloid complex of the rat, studied by brain microdialysis. Neurosci. Lett. 249, 49–52 (1998). (PMID: 9672386) ; Manassero, E., Renna, A., Milano, L. & Sacchetti, B. Lateral and basal amygdala account for opposite behavioral responses during the long-term expression of fearful memories. Sci. Rep. 8, 518 (2018). (PMID: 293232265765149) ; Lee, S.-C. et al. Basolateral amygdala nucleus responses to appetitive conditioned stimuli correlate with variations in conditioned behaviour. Nat. Commun. 7, 12275 (2016). (PMID: 274473544961864) ; Jikomes, N., Ramesh, R. N., Mandelblat-Cerf, Y. & Andermann, M. L. Preemptive stimulation of AgRP neurons in fed mice enables conditioned food seeking under threat. Curr. Biol. 26, 2500–2507 (2016). (PMID: 275685935039082) ; Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152.e15 (2018). (PMID: 295709935877408) ; Kröner, S., Rosenkranz, J. A., Grace, A. A. & Barrionuevo, G. Dopamine modulates excitability of basolateral amygdala neurons in vitro. J. Neurophysiol. 93, 1598–1610 (2005). (PMID: 15537813) ; Kroener, S., Chandler, L. J., Phillips, P. E. M. & Seamans, J. K. Dopamine modulates persistent synaptic activity and enhances the signal-to-noise ratio in the prefrontal cortex. PLoS One 4, e6507 (2009). (PMID: 196548662715878) ; Shabel, S. J. & Janak, P. H. Substantial similarity in amygdala neuronal activity during conditioned appetitive and aversive emotional arousal. Proc. Natl Acad. Sci. USA 106, 15031–15036 (2009). (PMID: 19706473) ; Gore, F. et al. Neural representations of unconditioned stimuli in basolateral amygdala mediate innate and learned responses. Cell 162, 134–145 (2015). (PMID: 261405944526462) ; Johansen, J. P., Tarpley, J. W., LeDoux, J. E. & Blair, H. T. Neural substrates for expectation-modulated fear learning in the amygdala and periaqueductal gray. Nat. Neurosci. 13, 979–986 (2010). (PMID: 206019462910797) ; Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015). (PMID: 43650514365051) ; Bäckman, C. M. et al. Characterization of a mouse strain expressing Cre recombinase from the 3’ untranslated region of the dopamine transporter locus. Genesis 44, 383–390 (2006). (PMID: 16865686) ; Asaad, W. F. & Eskandar, E. N. A flexible software tool for temporally-precise behavioral control in Matlab. J. Neurosci. Methods 174, 245–258 (2008). (PMID: 187069282630513) ; Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014). (PMID: 245096333943671) ; Broussard, G. J. et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018). (PMID: 301274246697169) ; Dimidschstein, J. et al. A viral strategy for targeting and manipulating interneurons across vertebrate species. Nat. Neurosci. 19, 1743–1749 (2016). (PMID: 277986295348112) ; Bocarsly, M. E. et al. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed. Opt. Express 6, 4546–4556 (2015). (PMID: 266010174646561) ; Tervo, D. G. R. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016). (PMID: 58728245872824) ; Resendez, S. L. et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat. Protoc. 11, 566–597 (2016). (PMID: 269143165239057) ; Ting, J. T., Daigle, T. L., Chen, Q. & Feng, G. Acute brain slice methods for adult and aging animals: application of targeted patch clamp analysis and optogenetics. Methods Mol. Biol. 1183, 221–242 (2014). (PMID: 250233124219416) ; Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007). (PMID: 17435752) ; Garfield, A. S. et al. A neural basis for melanocortin-4 receptor–regulated appetite. Nat. Neurosci. 18, 863–871 (2015). (PMID: 259154764446192) ; Bonin, V., Histed, M. H., Yurgenson, S. & Reid, R. C. Local diversity and fine-scale organization of receptive fields in mouse visual cortex. J. Neurosci. 31, 18506–18521 (2011). (PMID: 2217105122171051) ; Mukamel, E. A., Nimmerjahn, A. & Schnitzer, M. J. Automated analysis of cellular signals from large-scale calcium imaging data. Neuron 63, 747–760 (2009). (PMID: 197785053282191) ; Ziv, Y. et al. Long-term dynamics of CA1 hippocampal place codes. Nat. Neurosci. 16, 264–266 (2013). (PMID: 37843083784308) ; Petreanu, L. et al. Activity in motor-sensory projections reveals distributed coding in somatosensation. Nature 489, 299–303 (2012). (PMID: 229226463443316) ; Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic reorganization of neuronal activity patterns in parietal cortex. Cell 170, 986–999.e16 (2017). (PMID: 288235595718200) ; Matsumoto, H., Tian, J., Uchida, N. & Watabe-Uchida, M. Midbrain dopamine neurons signal aversion in a reward-context-dependent manner. eLife 5, e17328 (2016). (PMID: 277600025070948) ; Washburn, M. & Moises, H. Electrophysiological and morphological properties of rat basolateral amygdaloid neurons in vitro. J. Neurosci. 12, 4066–4079 (1992). (PMID: 1403101) ; Paxinos, G. & Franklin, K. B. J. The Mouse Brain in Stereotaxic Coordinates. 4th ed. (Academic Press, 2012).
  • Grant Information: DP2 DK105570 United States DK NIDDK NIH HHS; P30 DK046200 United States DK NIDDK NIH HHS; F32 DK112589 United States DK NIDDK NIH HHS; T32 DK007516 United States DK NIDDK NIH HHS; R01 DK109930 United States DK NIDDK NIH HHS; T32 NS007484 United States NS NINDS NIH HHS
  • Substance Nomenclature: 0 (Dopamine Plasma Membrane Transport Proteins) ; 0 (Slc6a3 protein, mouse) ; EC 2.7.11.17 (Calcium-Calmodulin-Dependent Protein Kinase Type 2)
  • Entry Date(s): Date Created: 20191016 Date Completed: 20200131 Latest Revision: 20220417
  • Update Code: 20231215
  • PubMed Central ID: PMC6858554

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -