Zum Hauptinhalt springen

Chromosomal mutations in Escherichia coli that improve tolerance to nonvolatile side-products from dilute acid treatment of sugarcane bagasse.

Shi, A ; Yomano, LP ; et al.
In: Biotechnology and bioengineering, Jg. 117 (2020), Heft 1, S. 85-95
Online academicJournal

Titel:
Chromosomal mutations in Escherichia coli that improve tolerance to nonvolatile side-products from dilute acid treatment of sugarcane bagasse.
Autor/in / Beteiligte Person: Shi, A ; Yomano, LP ; York, SW ; Zheng, H ; Shanmugam, KT ; Ingram, LO
Link:
Zeitschrift: Biotechnology and bioengineering, Jg. 117 (2020), Heft 1, S. 85-95
Veröffentlichung: <2005->: Hoboken, NJ : Wiley ; <i>Original Publication</i>: New York, Wiley., 2020
Medientyp: academicJournal
ISSN: 1097-0290 (electronic)
DOI: 10.1002/bit.27189
Schlagwort:
  • Biomass
  • Cellulose chemistry
  • Ethanol chemistry
  • Ethanol metabolism
  • Hydrogen-Ion Concentration
  • Hydrolysis
  • Cellulose metabolism
  • Escherichia coli genetics
  • Escherichia coli metabolism
  • Escherichia coli physiology
  • Mutation genetics
  • Mutation physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Research Support, U.S. Gov't, Non-P.H.S.
  • Language: English
  • [Biotechnol Bioeng] 2020 Jan; Vol. 117 (1), pp. 85-95. <i>Date of Electronic Publication: </i>2019 Nov 12.
  • MeSH Terms: Escherichia coli* / genetics ; Escherichia coli* / metabolism ; Escherichia coli* / physiology ; Mutation* / genetics ; Mutation* / physiology ; Cellulose / *metabolism ; Biomass ; Cellulose / chemistry ; Ethanol / chemistry ; Ethanol / metabolism ; Hydrogen-Ion Concentration ; Hydrolysis
  • References: Alriksson, B., Cavka, A., & Jönsson, L. J. (2011). Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents. Bioresource Technology, 102, 1254-1263. https://doi.org/10.1016/j.biortech.2010.08.037. ; Altaner, C. M., & Saake, B. (2016). Quantification of the chemical composition of lignocellulosics by solution 1H NMR spectroscopy of acid hydrolysates. Cellulose, 23, 1003-1010. https://doi.org/10.1007/s10570-015-0841-6. ; Bell, J. K., Yennawar, H. P., Wright, S. K., Thompson, J. R., Viola, R. E., & Banaszak, L. J. (2001). Structural analyses of a malate dehydrogenase with a variable active site. Journal of Biological Chemistry, 276, 31156-31162. https://doi.org/10.1074/jbc.M100902200. ; Cain, B. D., Norton, P. J., Eubanks, W., Nick, H. S., & Allen, C. M. (1993). Amplification of the bacA gene confers bacitracin resistance to Escherichia coli. Journal of Bacteriology, 175, 3784-3789. https://doi.org/10.1128/jb.175.12.3784-3789.1993. ; Cavka, A., Alriksson, B., Ahnlund, M., & Jönsson, L. J. (2011). Effect of sulfur oxyanions on lignocellulose-derived fermentation inhibitors. Biotechnology and Bioengineering, 108, 2592-2599. https://doi.org/10.1002/bit.23244. ; Chandel, A. K., Singh, O. V., & Rao, L. V. (2010). Biotechnological applications of hemicellulosic derived sugars: State-of-the-art. In Singh, O. V., & Harvey, S. P. (Eds.), Sustainable biotechnology: Sources of renewable energy (pp. 63-81). Dordrecht, Netherlands: Springer. ; Chang, H. Y., Chou, C. C., Hsu, M. F., & Wang, A. H. J. (2014). Proposed carrier lipid-binding site of undecaprenyl pyrophosphate phosphatase from Escherichia coli. Journal of Biological Chemistry, 289(27), 18719-18735. https://doi.org/10.1074/jbc.M114.575076. ; Demeke, M. M., Dietz, H., Li, Y., Foulquié-Moreno, M. R., Mutturi, S., Deprez, S., … Thevelein, J. M. (2013). Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnology for Biofuels, 6(1), 89. ; van den Ent, F., Amos, L., & Lowe, J. (2001). Bacterial ancestry of actin and tubulin. Current Opinion in Microbiology, 4, 634-638. ; Fatma, S., Hameed, A., Noman, M., Ahmed, T., Shahid, M., Tariq, M., … Tabassum, R. (2018). Lignocellulosic biomass: A sustainable bioenergy source for the future. Protein and Peptide Letters, 25, 148-163. https://doi.org/10.2174/0929866525666180122144504. ; Fernley, R. T., Lentz, S. R., & Aradshaw, R. A. (1981). Malate dehydrogenase: Isolation from E. coli and comparison with the eukaryotic mitochondrial and cytoplasmic forms. Bioscience Reports, 1, 497-507. ; Fonseca, B. G., Moutta Rde, O., Ferraz Fde, O., Vieira, E. R., Nogueira, A. S., Baratella, B. F., … da Silva, S. S. (2011). Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. Journal of Industrial Microbiology & Biotechnology, 38, 199-207. https://doi.org/10.1007/s10295-010-0845-z. ; Geddes, R., Shanmugam, K. T., & Ingram, L. O. (2015). Combining treatments to improve the fermentation of sugarcane bagasse hydrolysates by ethanologenic Escherichia coli LY180. Bioresource Technology, 189, 15-22. https://doi.org/10.1016/j.biortech.2015.03.141. ; Geddes, R. D., Wang, X., Yomano, L. P., Miller, E. N., Zheng, H., Shanmugam, K. T., & Ingram, L. O. (2014). Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180. Applied and Environmental Microbiology, 80, 5955-5964. https://doi.org/10.1128/Aem.01913. ; Gentry, D. R., & Cashel, M. (1996). Mutational analysis of the Escherichia coli spoT gene identifies distinct but overlapping regions involved in ppGpp synthesis and degradation. Molecular Microbiology, 19(6), 1373-1384. ; Glebes, T. Y., Sandoval, N. R., Gillis, J. H., & Gill, R. T. (2015). Comparison of genome-wide selection strategies to identify furfural tolerance genes in Escherichia coli. Biotechnology and Bioengineering, 112, 129-140. https://doi.org/10.1002/bit.25325. ; Glebes, T. Y., Sandoval, N. R., Reeder, P. J., Schilling, K. D., Zhang, M., & Gill, R. T. (2014). Genome-wide mapping of furfural tolerance genes in Escherichia coli. PLoS one, 9(1), e87540. https://doi.org/10.1371/journal.pone.0087540. ; Harel, Y. M., Bailone, A., & Bibi, E. (1999). Resistance to bacitracin as modulated by an Escherichia coli homologue of the bacitracin ABC transporter BcrC subunit from Bacillus licheniformis. Journal of Bacteriology, 181, 6176-6178. ; Hasona, A., Kim, Y., Healy, F. G., Ingram, L. O., & Shanmugam, K. T. (2004). Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. Journal of Bacteriology, 186, 7593-7600. https://doi.org/10.1128/JB.186.22.7593-7600.2004. ; Holwerda, E. K., Worthen, R. S., Kothari, N., Lasky, R. C., Davison, B. H., Fu, C., … Lynd, L. R. (2019). Multiple levers for overcoming the recalcitrance of lignocellulosic biomass. Biotechnology for Biofuels, 12, 25. https://doi.org/10.1186/s13068-019-1363-5. ; Jarboe, L. R. (2011). YqhD: A broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Applied Microbiology and Biotechnology, 89, 249-257. https://doi.org/10.1007/s00253-010-2912-9. ; Jönsson, L. J., Alriksson, B., & Nilvebrant, N. O. (2013). Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology for Biofuels, 6, 16. https://doi.org/10.1186/1754-6834-6-16. ; Jurado, M., Prieto, A., Martínez-Alcalá, Á., Martínez, Á. T., & Martínez, M. J. (2009). Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresource Technology, 100, 6378-6384. https://doi.org/10.1016/j.biortech.2009.07.049. ; Kim, D. (2018). Physico-chemical conversion of lignocellulose: Inhibitor effects and detoxification strategies: A mini review. Molecules, 23, 309. https://doi.org/10.3390/molecules23020309. ; Klein-Marcuschamer, D., Oleskowicz-Popiel, P., Simmons, B. A., & Blanch, H. W. (2012). The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 109, 1083-1087. https://doi.org/10.1002/bit.24370. ; Laffler, T., & Gallant, J. A. (1974). Stringent control of protein synthesis in E. coli. Cell, 3, 47-49. ; Li, X., Yang, R., Ma, M., Wang, X., Tang, J., Zhao, X., & Zhang, X. (2015). A novel aldehyde reductase encoded by YML131W from Saccharomyces cerevisiae confers tolerance to furfural derived from lignocellulosic biomass conversion. Bioenergy Research, 8, 119-129. ; Liu, Y., Zhou, H., Wang, L., Wang, S., & Fan, L. (2016). Improving Saccharomyces cerevisiae growth against lignocellulose-derived inhibitors as well as maximizing ethanol production by a combination proposal of γ-irradiation pretreatment with in situ detoxification. Chemical Engineering Journal, 287, 302-312. https://doi.org/10.1016/j.cej.2015.10.086. ; Lopes, D. D., Rosa, C. A., Hector, R. E., Dien, B. S., Mertens, J. A., & Ayub, M. A. Z. (2017). Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates. Journal of Industrial Microbiology & Biotechnology, 44, 1575-1588. ; Ma, M., & Liu, Z. L. (2010). Comparative transcriptome profiling analyses during the lag phase uncover YAP1, PDR1, PDR3, RPN4, and HSF1 as key regulatory genes in genomic adaptation to the lignocellulose derived inhibitor HMF for Saccharomyces cerevisiae. BMC Genomics, 11, 660. ; Manat, G., El Ghachi, M., Auger, R., Baouche, K., Olatunji, S., Kerff, F., … Bouhss, A. (2015). Membrane topology and biochemical characterization of the Escherichia coli BacA undecaprenyl-pyrophosphate phosphatase. PLoS one, 10, e0142870. https://doi.org/10.1371/journal.pone.0142870. ; Martinez, A., Grabar, T. B., Shanmugam, K. T., Yomano, L. P., York, S. W., & Ingram, L. O. (2007). Low salt medium for lactate and ethanol production by recombinant Escherichia coli B. Biotechnology Letters, 29, 397-404. https://doi.org/10.1007/s10529-006-9252-y. ; Miller, E. N., Jarboe, L. R., Yomano, L. P., York, S. W., Shanmugam, K. T., & Ingram, L. O. (2009). Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Applied and Environmental Microbiology, 75, 4315-4323. https://doi.org/10.1128/AEM.00567-09. ; Nieves, I. U., Geddes, C. C., Miller, E. N., Mullinnix, M. T., Hoffman, R. W., Fu, Z., … Ingram, L. O. (2011). Effect of reduced sulfur compounds on the fermentation of phosphoric acid pretreated sugarcane bagasse by ethanologenic Escherichia coli. Bioresource Technology, 102, 5145-5152. https://doi.org/10.1016/j.biortech.2011.02.008. ; Parreiras, L. S., Breuer, R. J., Avanasi Narasimhan, R., Higbee, A. J., La Reau, A., Tremaine, M., … Sato, T. K. (2014). Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS one, 9, e107499. https://doi.org/10.1371/journal.pone.0107499. ; Rajan, K., & Carrier, D. J. (2016). Insights into exo-cellulase inhibition by the hot water hydrolyzates of rice straw. ACS Sustainable Chemistry & Engineering, 4, 3627-3633. ; Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 5, 337-353. https://doi.org/10.1007/s13205-014-0246-5. ; Samuelov, N. S., Lamed, R., Lowe, S., & Zeikus, J. G. (1991). Influence of CO2-HCO3− levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Applied and Environmental Microbiology, 57, 3013-3019. ; Sawisit, A., Jantama, K., Zheng, H., Yomano, L. P., York, S. W., Shanmugam, K. T., & Ingram, L. O. (2015). Mutation in galP improved fermentation of mixed sugars to succinate using engineered Escherichia coli AS1600a and AM1 mineral salts medium. Bioresource Technology, 193, 433-441. https://doi.org/10.1016/j.biortech.2015.06.108. ; Shi, A., Zheng, H., Yomano, L. P., York, S. W., Shanmugam, K. T., & Ingram, L. O. (2016). Plasmidic expression of nemA and yafC* increased resistance of ethanologenic Escherichia coli LY180 to nonvolatile side products from dilute acid treatment of sugarcane bagasse and artificial hydrolysate. Applied and Environmental Microbiology, 82, 2137-2145. https://doi.org/10.1128/Aem.03488-15. ; Shi, A., Zhu, X., Lu, J., Zhang, X., & Ma, Y. (2013). Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Metabolic Engineering, 16, 1-10. https://doi.org/10.1016/j.ymben.2012.11.008. ; Skerker, J. M., Leon, D., Price, M. N., Mar, J. S., Tarjan, D. R., Wetmore, K. M., … Arkin, A. P. (2013). Dissecting a complex chemical stress: Chemogenomic profiling of plant hydrolysates. Molecular Systems Biology, 9, 674. https://doi.org/10.1038/msb.2013.30. ; Subtil, T., & Boles, E. (2011). Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters. Biotechnology for Biofuels, 4, 38. https://doi.org/10.1186/1754-6834-4-38. ; Sutherland, P., & McAlister-Henn, L. (1985). Isolation and expression of the Escherichia coli gene encoding malate dehydrogenase. Journal of Bacteriology, 163(3), 1074-1079. ; Wang, X., Gao, Q., & Bao, J. (2017). Enhancement of furan aldehydes conversion in Zymomonas mobilis by elevating dehydrogenase activity and cofactor regeneration. Biotechnology for Biofuels, 10, 24. ; Wang, X., Miller, E. N., Yomano, L. P., Zhang, X., Shanmugam, K. T., & Ingram, L. O. (2011). Increased furfural tolerance due to overexpression of NADH-dependent oxidoreductase FucO in Escherichia coli strains engineered for the production of ethanol and lactate. Applied and Environmental Microbiology, 77, 5132-5140. https://doi.org/10.1128/AEM.05008-11. ; Wang, X., Yomano, L. P., Lee, J. Y., York, S. W., Zheng, H., Mullinnix, M. T., … Ingram, L. O. (2013). Engineering furfural tolerance in Escherichia coli improves the fermentation of lignocellulosic sugars into renewable chemicals. Proceedings of the National Academy of Sciences of the United States of America, 110, 4021-4026. https://doi.org/10.1073/pnas.1217958110. ; Yomano, L. P., York, S. W., Shanmugam, K. T., & Ingram, L. O. (2009). Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli. Biotechnology Letters, 31, 1389-1398. https://doi.org/10.1007/s10529-009-0011-8. ; Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol production from fermentable sugar juice. The Scientific World Journal, 2014, 1-11. https://doi.org/10.1155/2014/957102. ; Zhang, X., Jantama, K., Moore, J. C., Shanmugam, K. T., & Ingram, L. O. (2007). Production of L-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 77, 355-366. https://doi.org/10.1007/s00253-007-1170-y.
  • Grant Information: International BASF Corporation; 2011-10006-30358 International US Department of Agriculture; 2012-67009-19596 International US Department of Agriculture; DE-PI0000031 International US Department of Energy's Office of International Affairs
  • Contributed Indexing: Keywords: bacA; biomass hydrolysate; ethanologenic E. coli; inhibitor tolerance; mdh
  • Substance Nomenclature: 3K9958V90M (Ethanol) ; 9004-34-6 (Cellulose) ; 9006-97-7 (bagasse)
  • Entry Date(s): Date Created: 20191016 Date Completed: 20210201 Latest Revision: 20210201
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -