Zum Hauptinhalt springen

Modulation of CXC-motif chemokine receptor 7, but not 4, expression is related to migration of the human prostate cancer cell LNCaP: regulation by androgen and inflammatory stimuli.

Yu, L ; Pham, Q ; et al.
In: Inflammation research : official journal of the European Histamine Research Society ... [et al.], Jg. 69 (2020-02-01), Heft 2, S. 167-178
Online academicJournal

Titel:
Modulation of CXC-motif chemokine receptor 7, but not 4, expression is related to migration of the human prostate cancer cell LNCaP: regulation by androgen and inflammatory stimuli.
Autor/in / Beteiligte Person: Yu, L ; Pham, Q ; Yu, LL ; Wang, TTY
Link:
Zeitschrift: Inflammation research : official journal of the European Histamine Research Society ... [et al.], Jg. 69 (2020-02-01), Heft 2, S. 167-178
Veröffentlichung: Basel, Switzerland : Birkhäuser, c1995-, 2020
Medientyp: academicJournal
ISSN: 1420-908X (electronic)
DOI: 10.1007/s00011-019-01305-0
Schlagwort:
  • Cell Line, Tumor
  • Cell Movement
  • Chemokine CXCL12 biosynthesis
  • Chemokine CXCL12 genetics
  • Computer Simulation
  • Dihydrotestosterone pharmacology
  • Flagellin pharmacology
  • Humans
  • Male
  • Prostatic Neoplasms pathology
  • RNA, Messenger biosynthesis
  • RNA, Neoplasm biosynthesis
  • Receptors, Androgen biosynthesis
  • Receptors, Androgen genetics
  • Receptors, CXCR biosynthesis
  • Receptors, CXCR4 biosynthesis
  • Tumor Microenvironment
  • Androgens metabolism
  • Inflammation metabolism
  • Prostatic Neoplasms genetics
  • Receptors, CXCR genetics
  • Receptors, CXCR4 genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Inflamm Res] 2020 Feb; Vol. 69 (2), pp. 167-178. <i>Date of Electronic Publication: </i>2019 Dec 21.
  • MeSH Terms: Androgens / *metabolism ; Inflammation / *metabolism ; Prostatic Neoplasms / *genetics ; Receptors, CXCR / *genetics ; Receptors, CXCR4 / *genetics ; Cell Line, Tumor ; Cell Movement ; Chemokine CXCL12 / biosynthesis ; Chemokine CXCL12 / genetics ; Computer Simulation ; Dihydrotestosterone / pharmacology ; Flagellin / pharmacology ; Humans ; Male ; Prostatic Neoplasms / pathology ; RNA, Messenger / biosynthesis ; RNA, Neoplasm / biosynthesis ; Receptors, Androgen / biosynthesis ; Receptors, Androgen / genetics ; Receptors, CXCR / biosynthesis ; Receptors, CXCR4 / biosynthesis ; Tumor Microenvironment
  • References: Brawley OW. Prostate cancer epidemiology in the United States. World J Urol. 2012;30:195–200. (PMID: 10.1007/s00345-012-0824-2) ; Lubeck DP, Grossfeld GD, Carroll PR. The effect of androgen deprivation therapy on health-related quality of life in men with prostate cancer. Urology. 2001;58:94–9. (PMID: 10.1016/S0090-4295(01)01250-X) ; Akashi T, Koizumi K, Tsuneyama K, Saiki I, Takano Y, Fuse H. Chemokine receptor CXCR4 expression and prognosis in patients with metastatic prostate cancer. Cancer Sci. 2008;99:539–42. (PMID: 10.1111/j.1349-7006.2007.00712.x) ; Chung LW, Baseman A, Assikis V, Zhau H. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol. 2005;173:10–20. (PMID: 10.1097/01.ju.0000141582.15218.10) ; Wang JH, Shiozawa Y, Wang JC, et al. The role of CXCR7/RDC1 as a chemokine receptor for CXCL12/SDF-1 in prostate cancer. J Biol Chem. 2007;283:4283–94. (PMID: 10.1074/jbc.M707465200) ; Chinni SR, Yamamoto H, Dong Z, Sabbota A, Bonfil RD, Cher ML. CXCL12/CXCR4 transactivates HER2 in lipid rafts of prostate cancer cells and promotes growth of metastatic deposits in bone. Mol Cancer Res. 2008;6:446–57. (PMID: 10.1158/1541-7786.MCR-07-0117) ; Sánchez-Martín L, Estecha A, Samaniego R, Sánchez-Ramón S, Vega MÁ, Sánchez-Mateos P. The chemokine CXCL12 regulates monocyte-macrophage differentiation and RUNX3 expression. Blood. 2011;117:88–97. (PMID: 10.1182/blood-2009-12-258186) ; Rigo A, Gottardi M, Zamò A, et al. Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12. Mol Cancer. 2010;9:273. (PMID: 10.1186/1476-4598-9-273) ; Ray P, Stacer AC, Fenner J, et al. CXCL12-γ in primary tumors drives breast cancer metastasis. Oncogene. 2015;34:2043–51. (PMID: 10.1038/onc.2014.157) ; Sun YX, Wang JC, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem. 2003;89:462–73. (PMID: 10.1002/jcb.10522) ; Roy I, Zimmerman NP, Mackinnon AC, Tsai S, Evans DB, Dwinell MB. CXCL12 Chemokine expression suppresses human pancreatic cancer growth and metastasis. PLoS ONE. 2014;9:e90400. (PMID: 10.1371/journal.pone.0090400) ; Singh S, Singh UP, Grizzle WE, Lillard JW Jr. CXCL12–CXCR4 interactions modulate prostate cancer cell migration, metalloproteinase expression and invasion. Lab Invest. 2004;84:1666–76. (PMID: 10.1038/labinvest.3700181) ; Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 express ion in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate. 2006;66:32–48. (PMID: 10.1002/pros.20318) ; Burns JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med. 2006;203:2201–13. (PMID: 10.1084/jem.20052144) ; Zheng K, Li HY, Su XL, et al. Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells. J Exp Clin Canc Res. 2010;29:31. (PMID: 10.1186/1756-9966-29-31) ; Rajagopal S, Kim J, Ahn S, et al. β-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. PNAS. 2010;107:2628–32. (PMID: 10.1073/pnas.0912852107) ; Singh RK, Lokeshwar BL. The IL-8–regulated chemokine receptor CXCR7 stimulates EGFR signaling to promote prostate cancer growth. Cancer Res. 2011;71:3268–77. (PMID: 10.1158/0008-5472.CAN-10-2769) ; Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44. (PMID: 10.1038/nature07205) ; Yu L, Chen SW. Toll-like receptors expressed in tumor cells: targets for therapy. Cancer Immunol Immunother. 2008;57:1271–8. (PMID: 10.1007/s00262-008-0459-8) ; Caruso C, Balistreri CR, Candore G, et al. Polymorphisms of pro-inflammatory genes and prostate cancer risk: a pharmacogenomic approach. Cancer Immunol Immunother. 2009;58:1919–33. (PMID: 10.1007/s00262-009-0658-y) ; Galli R, Starace D, Busà R, et al. TLR stimulation of prostate tumor cells induces chemokine-mediated recruitment of specific immune cell types. J Immunol. 2010;184:6658–69. (PMID: 10.4049/jimmunol.0902401) ; Hajishengallis G. Immune evasion strategies of porphyromonas gingivalis. J Oral Biosci. 2011;53:233–40. (PMID: 10.1016/S1349-0079(11)80006-X) ; Rieber N, Brand A, Hector A, et al. Flagellin induces myeloid-derived suppressor cells: implications for Pseudomonas aeruginosa infection in cystic fibrosis lung disease. J Immunol. 2013;190:1276–84. (PMID: 10.4049/jimmunol.1202144) ; Gann PH, Hennekens CH, Ma J, Longcope C, Stampfer MJ. Study of sex hormone levels and risk of prostate cancer. J Natl Cancer Inst. 1996;88:1118–26. (PMID: 10.1093/jnci/88.16.1118) ; Wang TTY, Hudson TS, Wang TC, et al. Differential effects of resveratrol on androgen-responsive LNCaP human prostate cancer cells in vitro and in vivo. Carcinogenesis. 2008;29:2001–100. (PMID: 10.1093/carcin/bgn131) ; Kim EK, Kim YS, Milner JA, Wang TTY. Indole-3-carbinol and 3′,3′-diindolylmethane modulate androgen's effect on C-C Chemokine ligand 2 and monocyte attraction to prostate cancer cells. Cancer Prev Res. 2013;6:519–29. (PMID: 10.1158/1940-6207.CAPR-12-0419) ; Peng H, Erdmann N, Whitney N, et al. HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1β. GLIA. 2006;54:619–29. (PMID: 10.1002/glia.20409) ; Huang HQ, Fletcher A, Niu YG, Wang TTY, Yu LL. Characterization of lipopolysaccharide-stimulated cytokine expression in macrophages and monocytes. Inflamm Res. 2012;61:1329–38. (PMID: 10.1007/s00011-012-0533-8) ; Wang TTY, Schoene NW, Kim YS, Mizuno CS, Rimando AM. Differential effects of resveratrol and its naturally occurring methylether analogs on cell cycle and apoptosis in human androgen-responsive LNCaP cancer cells. Mol Nutr Food Res. 2010;54:335–44. (PMID: 10.1002/mnfr.200900143) ; Veldscholte J, Berrevoets CA, Ris-Stalpers C, et al. The androgen receptor in LNCaP cells contains a mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J Steroid Biochem Mol Biol. 1992;41:665–9. (PMID: 10.1016/0960-0760(92)90401-4) ; Trasino SE, Harrison EH, Wang TTY. Androgen regulation of aldehyde dehydrogenase 1A3 (ALDH1A3) in the androgen-responsive human prostate cancer cell line LNCaP. Exp Biol Med. 2007;232:762–71. ; Niu YJ, Altuwaijri S, Lai KP, et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA. 2008;105:12182–7. (PMID: 10.1073/pnas.0804700105) ; Li T, Li D, Sha JJ, Sun P, Huang YR. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem Biophys Res Commun. 2009;383:280–5. (PMID: 10.1016/j.bbrc.2009.03.077) ; Hoy JJ, Kallifatidis G, Smith DK, Lokeshwar BL. Inhibition of androgen receptor promotes CXC-chemokine receptor 7-mediated prostate cancer cell survival. Sci Rep. 2017;7(1):3058. (PMID: 10.1038/s41598-017-02918-3) ; Wang JH, Loberg R, Taichman RS. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 2006;25:573–87. (PMID: 10.1007/s10555-006-9019-x) ; Uygur B, Wu WS. SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Mol Cancer. 2011;10:139. (PMID: 10.1186/1476-4598-10-139) ; Lee C, Sutkowski DM, Sensibar JA, et al. Regulation of proliferation and production of prostate-specific antigen in androgen-sensitive prostatic cancer cells, LNCaP, by dihydrotestosterone. Endocrinol. 1995;136:796–803. (PMID: 10.1210/endo.136.2.7530653) ; Fürstenberger G, Senn HJ. Insulin-like growth factors and cancer. Lancet. 2002;3:298–302. (PMID: 10.1016/S1470-2045(02)00731-3) ; Zhu ML, Kyprianou N. Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J. 2009;24:769–79. (PMID: 10.1096/fj.09-136994) ; Palapattu GS, Sutcliffe S, Bastian PJ, et al. Prostate carcinogenesis and inflammation: emerging insights. Carcinogenesis. 2005;26:1170–81. (PMID: 10.1093/carcin/bgh317)
  • Grant Information: 8040-51530-056-00D Agricultural Research Service
  • Contributed Indexing: Keywords: CXCR4; CXCR7; Chemokine; DHT; Migration; Prostate cancer
  • Substance Nomenclature: 0 (ACKR3 protein, human) ; 0 (Androgens) ; 0 (CXCL12 protein, human) ; 0 (CXCR4 protein, human) ; 0 (Chemokine CXCL12) ; 0 (RNA, Messenger) ; 0 (RNA, Neoplasm) ; 0 (Receptors, Androgen) ; 0 (Receptors, CXCR) ; 0 (Receptors, CXCR4) ; 08J2K08A3Y (Dihydrotestosterone) ; 12777-81-0 (Flagellin)
  • Entry Date(s): Date Created: 20191223 Date Completed: 20201120 Latest Revision: 20221019
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -