Zum Hauptinhalt springen

Lizards and rabbits may increase Chagas infection risk in the Mediterranean-type ecosystem of South America.

San Juan, E ; Araya-Donoso, R ; et al.
In: Scientific reports, Jg. 10 (2020-02-05), Heft 1, S. 1853
Online academicJournal

Titel:
Lizards and rabbits may increase Chagas infection risk in the Mediterranean-type ecosystem of South America.
Autor/in / Beteiligte Person: San Juan, E ; Araya-Donoso, R ; Sandoval-Rodríguez, A ; Yáñez-Meza, A ; Quiroga, N ; Botto-Mahan, C
Link:
Zeitschrift: Scientific reports, Jg. 10 (2020-02-05), Heft 1, S. 1853
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2020
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-020-59054-8
Schlagwort:
  • Animals
  • Ecosystem
  • Host-Parasite Interactions physiology
  • Insect Vectors parasitology
  • Mammals parasitology
  • Rabbits
  • Risk
  • South America
  • Temperature
  • Triatominae parasitology
  • Trypanosoma cruzi pathogenicity
  • Chagas Disease etiology
  • Chagas Disease parasitology
  • Lizards parasitology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2020 Feb 05; Vol. 10 (1), pp. 1853. <i>Date of Electronic Publication: </i>2020 Feb 05.
  • MeSH Terms: Chagas Disease / *etiology ; Chagas Disease / *parasitology ; Lizards / *parasitology ; Animals ; Ecosystem ; Host-Parasite Interactions / physiology ; Insect Vectors / parasitology ; Mammals / parasitology ; Rabbits ; Risk ; South America ; Temperature ; Triatominae / parasitology ; Trypanosoma cruzi / pathogenicity
  • References: Swei, A., Meentemeyer, R. & Briggs, C. J. Influence of abiotic and environmental factors on the density and infection prevalence of Ixodes pacificus (Acari: Ixodidae) with Borrelia burgdorferi. J. Med. Entomol. 48, 20–28 (2011). (PMID: 10.1603/ME10131) ; Gottdenker, N. L., Chaves, L. F., Calzada, J. E., Saldaña, A. & Carroll, C. R. Host life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in changing landscapes. PLoS Negl. Trop. Dis. 6, e1884 (2012). (PMID: 10.1371/journal.pntd.0001884) ; Gould, E. A. & Higgs, S. Impact of climate change and other factors on emerging arbovirus diseases. Trans. R. Soc. Trop. Med. Hyg. 103, 109–121 (2009). (PMID: 10.1016/j.trstmh.2008.07.025) ; Pongsiri, M. J. et al. Biodiversity loss affects global disease ecology. Bioscience 59, 945–954 (2009). (PMID: 10.1525/bio.2009.59.11.6) ; Gürtler, R. E. & Cardinal, M. V. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop. 151, 32–50 (2015). (PMID: 10.1016/j.actatropica.2015.05.029) ; Brownstein, J. S., Skelly, D. K., Holford, T. R. & Fish, D. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia 146, 469–475 (2005). (PMID: 10.1007/s00442-005-0251-9) ; Oda, E., Solari, A. & Botto-Mahan, C. Effect of mammal host diversity and density on the infection level of Trypanosoma cruzi in sylvatic kissing bugs. Med. Vet. Entomol. 28, 384–390 (2014). (PMID: 10.1111/mve.12064) ; Johnson, P. T., Preston, D. L., Hoverman, J. T. & Richgels, K. L. Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230–233 (2013). (PMID: 10.1038/nature11883) ; Poulin, R. Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132, 143–151 (2006). (PMID: 10.1017/S0031182005008693) ; Pliscoff, P., Luebert, F., Hilger, H. H. & Guisan, A. Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment. Ecol. Modell. 288, 166–177 (2014). (PMID: 10.1016/j.ecolmodel.2014.06.003) ; Botto-Mahan, C., Ortiz, S., Rozas, M., Cattan, P. E. & Solari, A. DNA evidence of Trypanosoma cruzi in the Chilean wild vector Mepraia spinolai (Hemiptera: Reduviidae). Mem. Inst. Oswaldo Cruz 100, 237–239 (2005a). (PMID: 10.1590/S0074-02762005000300003) ; Ihle-Soto, C. et al. Spatio-temporal characterization of Trypanosoma cruzi infection and discrete typing units infecting hosts and vectors from non-domestic foci of Central Chile. PLoS Negl. Trop. Dis. 13, e7170 (2019). (PMID: 10.1371/journal.pntd.0007170) ; Cattan, P. E., Pinochet, A., Botto-Mahan, C., Acuña, M. & Canals, M. Abundance of Mepraia spinolai in a periurban zone of Chile. Mem. Inst. Oswaldo Cruz 97, 285–287 (2002). (PMID: 10.1590/S0074-02762002000300001) ; Botto-Mahan, C., Cattan, P. E., Canals, M. & Acuña, M. Seasonal variation in the home range and host availability of the blood-sucking insect Mepraia spinolai in wild environment. Acta Trop. 95, 160–163 (2005b). (PMID: 10.1016/j.actatropica.2005.05.001) ; Bacigalupo, A. et al. Primer hallazgo de vectores de la enfermedad de Chagas asociados a matorrales silvestres en la Región Metropolitana, Chile. Rev. Med. Chil. 134, 1230–1236 (2006). (PMID: 10.4067/S0034-98872006001000003) ; Correa, J. P. et al. Spatial distribution of an infectious disease in a small mammal community. Sci. Nat. 102, 51 (2015). (PMID: 10.1007/s00114-015-1304-5) ; Sagua, H., Araya, J., González, J. & Neira, I. Mepraia spinolai in the Southeastern Pacific Ocean Coast (Chile)-First insular record and feeding pattern on the Pan de Azucar Island. Mem. Inst. Oswaldo Cruz 95, 167–170 (2000). (PMID: 10.1590/S0074-02762000000200006) ; Canals, M., Cruzat, L., Molina, M. C., Ferreira, A. & Cattan, P. E. Blood host sources of Mepraia spinolai (Heteroptera: Reduviidae), wild vector of Chagas disease in Chile. J. Med. Entomol. 38, 303–307 (2001). (PMID: 10.1603/0022-2585-38.2.303) ; Botto-Mahan, C. et al. Temporal variation of Trypanosoma cruzi infection in native mammals in Chile. Vector Borne Zoonotic. Dis. 10, 317–319 (2010). (PMID: 10.1089/vbz.2009.0006) ; Botto-Mahan, C., Acuña-Retamar, M., Campos, R., Cattan, P. E. & Solari, A. European rabbits (Oryctolagus cuniculus) are naturally infected with different Trypanosoma cruzi genotypes. Am. J. Trop. Med. Hyg. 80, 944–946 (2009). (PMID: 10.4269/ajtmh.2009.80.944) ; Ehrenfeld, M. J., Canals, M. & Cattan, P. E. Population parameters of Triatoma spinolai (Heteroptera: Reduviidae) under different environmental conditions and densities. J. Med. Entomol. 35, 740–744 (1998). (PMID: 10.1093/jmedent/35.5.740) ; Hay, S. I., Guerra, C. A., Tatem, A. J., Noor, A. M. & Snow, R. W. The global distribution and population at risk of malaria: past, present, and future. Lancet Infect. Dis. 4, 327–336 (2004). (PMID: 10.1016/S1473-3099(04)01043-6) ; Fresquet, N. & Lazzari, C. R. Response to heat in Rhodnius prolixus: the role of the thermal background. J. Insect Physiol. 57, 1446–1449 (2011). (PMID: 10.1016/j.jinsphys.2011.07.012) ; Lehane, M.J. The Biology of Blood-Sucking in Insects (Cambridge University Press, 2005). ; Lafferty, K. D. Calling for an ecological approach to studying climate change and infectious diseases. Ecology 90, 932–933 (2009). (PMID: 10.1890/08-1767.1) ; QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project, https://qgis.org (2018). ; Wincker, P. et al. Use of a simplified polymerase chain reaction procedure to detect Trypanosoma cruzi in blood samples from chronic chagasic patients in a rural endemic area. Am. J. Trop. Med. Hyg. 51, 771–777 (1994). (PMID: 10.4269/ajtmh.1994.51.771) ; Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004). (PMID: 10.1016/j.tree.2003.10.013) ; R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing. URL, https://www.R-project.org/ (2018). ; Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Spring Science and Business Media, 2009). ; Acuña-Retamar, M., Botto-Mahan, C., Canals, M., Correa, J. P. & Cattan, P. E. Comparative population dynamics of the bug Mepraia spinolai, a sylvatic vector of Chagas’ disease, in different hosts. Med. Vet. Entomol. 23, 106–110 (2009). (PMID: 10.1111/j.1365-2915.2009.00795.x) ; Hill, W. A. & Brown, J. P. Zoonoses of rabbits and rodents. Vet. Clin. North Am. Exot. Anim. Pract. 14, 519–531 (2011). (PMID: 10.1016/j.cvex.2011.05.009) ; Abad-Franch, F., Palomeque, F. S., Aguilar, H. & Miles, M. A. Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador. Trop. Med. Int. Health 10, 1258–1266 (2005). (PMID: 10.1111/j.1365-3156.2005.01511.x) ; Lindström, A. & Jaenson, T. G. Distribution of the common tick, Ixodes ricinus (Acari: Ixodidae), in different vegetation types in southern Sweden. J. Med. Entomol. 40, 375–378 (2003). (PMID: 10.1603/0022-2585-40.4.375) ; Chacón, F. et al. Feeding profile of Mepraia spinolai, a sylvatic vector of Chagas disease in Chile. Acta Trop. 162, 171–173 (2016). (PMID: 10.1016/j.actatropica.2016.06.027) ; Bardosh, K. L., Ryan, S., Ebi, K., Welburn, S. & Singer, B. Addressing vulnerability, building resilience: community-based adaptation to vector-borne diseases in the context of global change. Infect. Dis. Poverty 6, 166 (2017). (PMID: 10.1186/s40249-017-0375-2) ; Gozlan, R. E. & Marine, C. Environmental change and pathogen transmission in Ecology and Evolution of Infectious Diseases: Pathogen Control and Public Health Management in Low-Income Countries (eds. Roche, B., Broutin, H. & Simard, F.) 59–76 (Oxford University Press, Oxford, 2018). ; Dobson, A. D. & Auld, S. K. Epidemiological implications of host biodiversity and vector biology: key insights from simple models. Am. Nat. 187, 405–422 (2016). (PMID: 10.1086/685445) ; Vidal, M.A. & Labra, A. Dieta de anfibios y reptiles in Herpetología de Chile (eds. Vidal, M. A. & Labra, A.) 453–482 (Science Verlag Ediciones, 2008). ; Ramírez, P. A., González, A. & Botto-Mahan, C. Masking behavior by Mepraia spinolai (Hemiptera: Reduviidae): Anti-predator defense and life history trade-offs. J. Insect. Behav. 26, 592–602 (2013). (PMID: 10.1007/s10905-012-9371-3) ; Ryckman, R. Lizards: a laboratory host for Triatominae and Trypanosoma cruzi Chagas (Hemiptera: Reduviidae) (Protomonadida: Trypanosomidae). Trans. Am. Microsc. Soc. 73, 215–218 (1954). (PMID: 10.2307/3223760) ; Asin, S. & Catala, S. Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J. Parasitol. 81, 1–7 (1995). (PMID: 10.2307/3283997) ; Ferreira, R. C., Teixeira, C. F., de Sousa, V. F. A. & Guarneri, A. A. Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus. Parasitol. Res. 117, 1737–1744 (2018). (PMID: 10.1007/s00436-018-5854-2) ; Schaub, G. A. Direct transmission of Trypanosoma cruzi between vectors of Chagas’ disease. Acta Trop. 45, 11–19 (1988). (PMID: 2896441) ; Falvo, M. L., Lorenzo Figueiras, A. N. & Manrique, G. Spatio-temporal analysis of the role of faecal depositions in aggregation behaviour of the triatomine Rhodnius prolixus. Physiol. Entomol. 41, 24–30 (2016). (PMID: 10.1111/phen.12120) ; Roche, B., Broutin, H. & Simard, F. Ecology and Evolution of Infectious Diseases: Pathogen Control and Public Health Management in Low-Income Countries (Oxford University Press, 2018).
  • Entry Date(s): Date Created: 20200207 Date Completed: 20201112 Latest Revision: 20210204
  • Update Code: 20231215
  • PubMed Central ID: PMC7002642

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -