Zum Hauptinhalt springen

Clades of huge phages from across Earth's ecosystems.

Al-Shayeb, B ; Sachdeva, R ; et al.
In: Nature, Jg. 578 (2020-02-01), Heft 7795, S. 425-431
Online academicJournal

Titel:
Clades of huge phages from across Earth's ecosystems.
Autor/in / Beteiligte Person: Al-Shayeb, B ; Sachdeva, R ; Chen, LX ; Ward, F ; Munk, P ; Devoto, A ; Castelle, CJ ; Olm, MR ; Bouma-Gregson, K ; Amano, Y ; He, C ; Méheust, R ; Brooks, B ; Thomas, A ; Lavy, A ; Matheus-Carnevali, P ; Sun, C ; Goltsman, DSA ; Borton, MA ; Sharrar, A ; Jaffe, AL ; Nelson, TC ; Kantor, R ; Keren, R ; Lane, KR ; Farag, IF ; Lei, S ; Finstad, K ; Amundson, R ; Anantharaman, K ; Zhou, J ; Probst, AJ ; Power, ME ; Tringe, SG ; Li, WJ ; Wrighton, K ; Harrison, S ; Morowitz, M ; Relman, DA ; Doudna, JA ; Lehours, AC ; Warren, L ; Cate, JHD ; Santini, JM ; Banfield, JF
Link:
Zeitschrift: Nature, Jg. 578 (2020-02-01), Heft 7795, S. 425-431
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2020
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-020-2007-4
Schlagwort:
  • Amino Acyl-tRNA Synthetases genetics
  • Animals
  • Bacteria genetics
  • Bacteriophages isolation & purification
  • Bacteriophages metabolism
  • Biodiversity
  • CRISPR-Cas Systems genetics
  • Evolution, Molecular
  • Gene Expression Regulation, Bacterial
  • Gene Expression Regulation, Viral
  • Host Specificity
  • Humans
  • Lakes virology
  • Molecular Sequence Annotation
  • Oceans and Seas
  • Prophages genetics
  • Protein Biosynthesis
  • RNA, Transfer genetics
  • Ribosomal Proteins genetics
  • Seawater virology
  • Soil Microbiology
  • Transcription, Genetic
  • Bacteria virology
  • Bacteriophages classification
  • Bacteriophages genetics
  • Earth, Planet
  • Ecosystem
  • Genome, Viral genetics
  • Phylogeny
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2020 Feb; Vol. 578 (7795), pp. 425-431. <i>Date of Electronic Publication: </i>2020 Feb 12.
  • MeSH Terms: Earth, Planet* ; Ecosystem* ; Phylogeny* ; Bacteria / *virology ; Bacteriophages / *classification ; Bacteriophages / *genetics ; Genome, Viral / *genetics ; Amino Acyl-tRNA Synthetases / genetics ; Animals ; Bacteria / genetics ; Bacteriophages / isolation & purification ; Bacteriophages / metabolism ; Biodiversity ; CRISPR-Cas Systems / genetics ; Evolution, Molecular ; Gene Expression Regulation, Bacterial ; Gene Expression Regulation, Viral ; Host Specificity ; Humans ; Lakes / virology ; Molecular Sequence Annotation ; Oceans and Seas ; Prophages / genetics ; Protein Biosynthesis ; RNA, Transfer / genetics ; Ribosomal Proteins / genetics ; Seawater / virology ; Soil Microbiology ; Transcription, Genetic
  • References: Yuan, Y. & Gao, M. Jumbo bacteriophages: an overview. Front. Microbiol. 8, 403 (2017). (PMID: 283522595348500) ; Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018). (PMID: 2986709610.1038/s41564-018-0166-y) ; Rascovan, N., Duraisamy, R. & Desnues, C. Metagenomics and the human virome in asymptomatic individuals. Annu. Rev. Microbiol. 70, 125–141 (2016). (PMID: 2760755010.1146/annurev-micro-102215-095431) ; Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018). (PMID: 30013236678697010.1038/s41564-018-0190-y) ; Balcazar, J. L. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 10, e1004219 (2014). (PMID: 25078987411754110.1371/journal.ppat.1004219) ; Penadés, J. R., Chen, J., Quiles-Puchalt, N., Carpena, N. & Novick, R. P. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol. 23, 171–178 (2015). (PMID: 2552829510.1016/j.mib.2014.11.019) ; Brown-Jaque, M. et al. Detection of bacteriophage particles containing antibiotic resistance genes in the sputum of cystic fibrosis patients. Front. Microbiol. 9, 856 (2018). (PMID: 29765367593834810.3389/fmicb.2018.00856) ; Shkoporov, A. N. & Hill, C. Bacteriophages of the human gut: the “known unknown” of the microbiome. Cell Host Microbe 25, 195–209 (2019). (PMID: 3076353410.1016/j.chom.2019.01.017) ; Devoto, A. E. et al. Megaphages infect Prevotella and variants are widespread in gut microbiomes. Nat. Microbiol. 4, 693–700 (2019). (PMID: 30692672678488510.1038/s41564-018-0338-9) ; Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018). (PMID: 3018166310.1038/s41579-018-0076-2) ; Pérez-Brocal, V. et al. A small microbial genome: the end of a long symbiotic relationship? Science 314, 312–313 (2006). (PMID: 1703862510.1126/science.1130441) ; Nakabachi, A. et al. The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314, 267 (2006). (PMID: 1703861510.1126/science.1134196) ; Lobry, J. R. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13, 660–665 (1996). (PMID: 867674010.1093/oxfordjournals.molbev.a025626) ; Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016). (PMID: 2753303410.1038/nature19094) ; Paez-Espino, D. et al. IMG/VR: a database of cultured and uncultured DNA viruses and retroviruses. Nucleic Acids Res. 45, D457–D465 (2017). (PMID: 27799466) ; Ivanova, N. N. et al. Stop codon reassignments in the wild. Science 344, 909–913 (2014). (PMID: 2485527010.1126/science.1250691) ; Mizuno, C. M. et al. Numerous cultivated and uncultivated viruses encode ribosomal proteins. Nat. Commun. 10, 752 (2019). (PMID: 30765709637595710.1038/s41467-019-08672-6) ; van Duin, J. & Wijnands, R. The function of ribosomal protein S21 in protein synthesis. Eur. J. Biochem. 118, 615–619 (1981). (PMID: 702848310.1111/j.1432-1033.1981.tb05563.x) ; Farwell, M. A., Roberts, M. W. & Rabinowitz, J. C. The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol. Microbiol. 6, 3375–3383 (1992). (PMID: 128300110.1111/j.1365-2958.1992.tb02205.x) ; Sørensen, M. A., Fricke, J. & Pedersen, S. Ribosomal protein S1 is required for translation of most, if not all, natural mRNAs in Escherichia coli in vivo. J. Mol. Biol. 280, 561–569 (1998). (PMID: 967728810.1006/jmbi.1998.1909) ; Frank, J. A. et al. Structure and function of a cyanophage-encoded peptide deformylase. ISME J. 7, 1150–1160 (2013). (PMID: 23407310366068110.1038/ismej.2013.4) ; Janssen, B. D. & Hayes, C. S. The tmRNA ribosome-rescue system. Adv. Protein Chem. Struct. Biol. 86, 151–191 (2012). (PMID: 22243584335879710.1016/B978-0-12-386497-0.00005-0) ; Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019). (PMID: 3052307710.1126/science.aav7271) ; Shmakov, S. et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017). (PMID: 28111461585189910.1038/nrmicro.2016.184) ; Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR–Cas14 enzymes. Science 362, 839–842 (2018). (PMID: 30337455665974210.1126/science.aav4294) ; Seed, K. D., Lazinski, D. W., Calderwood, S. B. & Camilli, A. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494, 489–491 (2013). (PMID: 23446421358779010.1038/nature11927) ; Luo, M. L., Mullis, A. S., Leenay, R. T. & Beisel, C. L. Repurposing endogenous type I CRISPR–Cas systems for programmable gene repression. Nucleic Acids Res. 43, 674–681 (2015). (PMID: 2532632110.1093/nar/gku971) ; Stachler, A.-E. & Marchfelder, A. Gene repression in Haloarchaea using the CRISPR (clustered regularly interspaced short palindromic repeats)–Cas I-B system. J. Biol. Chem. 291, 15226–15242 (2016). (PMID: 27226589494693610.1074/jbc.M116.724062) ; Toms, A. & Barrangou, R. On the global CRISPR array behavior in class I systems. Biol. Direct 12, 20 (2017). (PMID: 28851439557592410.1186/s13062-017-0193-2) ; Brown, K. L. & Hughes, K. T. The role of anti-sigma factors in gene regulation. Mol. Microbiol. 16, 397–404 (1995). (PMID: 756510110.1111/j.1365-2958.1995.tb02405.x) ; Bondy-Denomy, J. et al. Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 526, 136–139 (2015). (PMID: 26416740493506710.1038/nature15254) ; Pawluk, A. et al. Inactivation of CRISPR–Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat. Microbiol. 1, 16085 (2016). (PMID: 2757310810.1038/nmicrobiol.2016.85) ; Chaikeeratisak, V. et al. Assembly of a nucleus-like structure during viral replication in bacteria. Science 355, 194–197 (2017). (PMID: 28082593602818510.1126/science.aal2130) ; Chaikeeratisak, V. et al. The phage nucleus and tubulin spindle are conserved among large Pseudomonas phages. Cell Rep. 20, 1563–1571 (2017). (PMID: 28813669602818910.1016/j.celrep.2017.07.064) ; Mendoza, S. D. et al. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases. Nature 577, 244–248 (2020). (PMID: 3181926210.1038/s41586-019-1786-y) ; Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299 (2019). (PMID: 30763538688500410.1016/j.chom.2019.01.008) ; Jaafar, Z. A. & Kieft, J. S. Viral RNA structure-based strategies to manipulate translation. Nat. Rev. Microbiol. 17, 110–123 (2019). (PMID: 3051498210.1038/s41579-018-0117-x) ; Woese, C. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854–6859 (1998). (PMID: 96185022266010.1073/pnas.95.12.6854) ; Subramanian, A. R. Structure and functions of ribosomal protein S1. Prog. Nucleic Acid Res. Mol. Biol. 28, 101–142 (1983). (PMID: 634887410.1016/S0079-6603(08)60085-9) ; Loveland, A. B. & Korostelev, A. A. Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM. Methods 137, 55–66 (2018). (PMID: 2924775710.1016/j.ymeth.2017.12.004) ; Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084) ; Karsenti, E. et al. A holistic approach to marine eco-systems biology. PLoS Biol. 9, e1001177 (2011). (PMID: 22028628319647210.1371/journal.pbio.1001177) ; Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016). (PMID: 2765492110.1038/nature19366) ; Peng, Y., Leung, H. C. M., Yiu, S. M. & Chin, F. Y. L. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420–1428 (2012). (PMID: 2249575410.1093/bioinformatics/bts174) ; Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017). (PMID: 28298430541177710.1101/gr.213959.116) ; Edgar, R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010). (PMID: 2070969110.1093/bioinformatics/btq461) ; Joshi, N. A. & Fass, J. N. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files. v.1.33 https://github.com/najoshi/sickle (2011). ; Bushnell, B. BBMap short read aligner. https://sourceforge.net/projects/bbmap/ (2019). ; Raveh-Sadka, T. et al. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. eLife 4, e05477 (2015). (PMID: 438474510.7554/eLife.05477) ; Bolduc, B. et al. vConTACT: an iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 5, e3243 (2017). (PMID: 28480138541921910.7717/peerj.3243) ; Kurtz, S. The Vmatch large scale sequence analysis software. http://www.vmatch.de/ (2017). ; Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012). (PMID: 22388286332238110.1038/nmeth.1923) ; Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016). (PMID: 27819664553856710.1038/nbt.3704) ; Wrighton, K. C. et al. Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME J. 8, 1452–1463 (2014). (PMID: 24621521406939110.1038/ismej.2013.249) ; Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014). (PMID: 2428837110.1093/nar/gkt1223) ; Haft, D. H. et al. TIGRFAMs and genome properties in 2013. Nucleic Acids Res. 41, D387–D395 (2013). (PMID: 2319765610.1093/nar/gks1234) ; Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).]. (PMID: 2778970310.1093/nar/gkw975) ; Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997). (PMID: 902310414652510.1093/nar/25.5.955) ; Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004). (PMID: 1470433837326510.1093/nar/gkh152) ; Hauser, M., Steinegger, M. & Söding, J. MMseqs software suite for fast and deep clustering and searching of large protein sequence sets. Bioinformatics 32, 1323–1330 (2016). (PMID: 2674350910.1093/bioinformatics/btw006) ; Remmert, M., Biegert, A., Hauser, A. & Söding, J. HHblits: lightning-fast iterative protein sequence searching by HMM–HMM alignment. Nat. Methods 9, 173–175 (2012). (PMID: 10.1038/nmeth.1818) ; Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002). (PMID: 1191701810183310.1093/nar/30.7.1575) ; Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016). (PMID: 2647645410.1093/nar/gkv1070) ; Bernardes, J. S., Vieira, F. R. J., Zaverucha, G. & Carbone, A. A multi-objective optimization approach accurately resolves protein domain architectures. Bioinformatics 32, 345–353 (2016). (PMID: 2645888910.1093/bioinformatics/btv582) ; Petersen, T. N., Brunak, S., von Heijne, G. & Nielsen, H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786 (2011). (PMID: 2195913110.1038/nmeth.1701) ; Peabody, M. A., Laird, M. R., Vlasschaert, C., Lo, R. & Brinkman, F. S. L. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 44, D663–D668 (2016). (PMID: 2660269110.1093/nar/gkv1271) ; Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001). (PMID: 1115261310.1006/jmbi.2000.4315) ; Dutilh, B. E. et al. FACIL: fast and accurate genetic code inference and logo. Bioinformatics 27, 1929–1933 (2011). (PMID: 21653513312952910.1093/bioinformatics/btr316) ; Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999). (PMID: 1055632114875310.1093/nar/27.23.4636) ; Steinegger, M., Meier, A. & Biegert, A. HH-suite3 for fast remote homology detection and deep protein annotation. Bioinformatics 20, 473 (2019). (PMID: 315211106744700) ; Cole, C., Barber, J. D. & Barton, G. J. The Jpred 3 secondary structure prediction server. Nucleic Acids Res. 36, W197–W201 (2008). (PMID: 18463136244779310.1093/nar/gkn238) ; Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010). (PMID: 20053844282811210.1093/bioinformatics/btq003) ; Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013). (PMID: 23329690360331810.1093/molbev/mst010) ; Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015). (PMID: 2537143010.1093/molbev/msu300) ; Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017). (PMID: 28742071570273210.1038/ismej.2017.126) ; Darling, A. C. E., Mau, B., Blattner, F. R. & Perna, N. T. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403 (2004). (PMID: 1523175444215610.1101/gr.2289704) ; Biswas, A., Staals, R. H. J., Morales, S. E., Fineran, P. C. & Brown, C. M. CRISPRDetect: a flexible algorithm to define CRISPR arrays. BMC Genomics 17, 356 (2016). (PMID: 27184979486925110.1186/s12864-016-2627-0) ; Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017). (PMID: 2800505610.1038/nature21059) ; Makarova, K. S. et al. An updated evolutionary classification of CRISPR–Cas systems. Nat. Rev. Microbiol. 13, 722–736 (2015). (PMID: 26411297542611810.1038/nrmicro3569) ; Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60, 385–397 (2015). (PMID: 26593719466026910.1016/j.molcel.2015.10.008) ; Yan, W. X. et al. Cas13d is a compact RNA-targeting type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein. Mol. Cell 70, 327–339 (2018). (PMID: 29551514593546610.1016/j.molcel.2018.02.028) ; Smargon, A. A. et al. Cas13b is a Type VI-B CRISPR-associated RNA-guided RNAse differentially regulated by accessory proteins Csx27 and Csx28. Mol. Cell 65, 618–630 (2017). (PMID: 28065598543211910.1016/j.molcel.2016.12.023) ; Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 223171210.1016/S0022-2836(05)80360-2) ; Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015). (PMID: 2540200710.1038/nmeth.3176) ; Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014). (PMID: 24451623399814410.1093/bioinformatics/btu033) ; Smoot, M. E., Ono, K., Ruscheinski, J., Wang, P.-L. & Ideker, T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432 (2011). (PMID: 2114934010.1093/bioinformatics/btq675)
  • Grant Information: R01 AI092531 United States AI NIAID NIH HHS; R01 GM109454 United States GM NIGMS NIH HHS; U01 AI142817 United States AI NIAID NIH HHS
  • Substance Nomenclature: 0 (Ribosomal Proteins) ; 9014-25-9 (RNA, Transfer) ; EC 6.1.1.- (Amino Acyl-tRNA Synthetases)
  • Entry Date(s): Date Created: 20200214 Date Completed: 20200529 Latest Revision: 20240425
  • Update Code: 20240425
  • PubMed Central ID: PMC7162821

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -