Zum Hauptinhalt springen

Low-dose lithium feeding increases the SERCA2a-to-phospholamban ratio, improving SERCA function in murine left ventricles.

Hamstra, SI ; Kurgan, N ; et al.
In: Experimental physiology, Jg. 105 (2020-04-01), Heft 4, S. 666-675
Online academicJournal

Titel:
Low-dose lithium feeding increases the SERCA2a-to-phospholamban ratio, improving SERCA function in murine left ventricles.
Autor/in / Beteiligte Person: Hamstra, SI ; Kurgan, N ; Baranowski, RW ; Qiu, L ; Watson, CJF ; Messner, HN ; MacPherson, REK ; MacNeil, AJ ; Roy, BD ; Fajardo, VA
Link:
Zeitschrift: Experimental physiology, Jg. 105 (2020-04-01), Heft 4, S. 666-675
Veröffentlichung: Cambridge, Eng : Wiley-Blackwell ; <i>Original Publication</i>: Cambridge ; New York, NY, USA : Published for the Physiological Society by Cambridge University Press, c1990-, 2020
Medientyp: academicJournal
ISSN: 1469-445X (electronic)
DOI: 10.1113/EP088061
Schlagwort:
  • Animals
  • Calcium metabolism
  • Cardiomyopathies metabolism
  • Glycogen Synthase Kinase 3 metabolism
  • Heart Failure metabolism
  • Heart Ventricles metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Muscle Proteins metabolism
  • Myocytes, Cardiac drug effects
  • Myocytes, Cardiac metabolism
  • Phosphorylation drug effects
  • Calcium-Binding Proteins metabolism
  • Heart Ventricles drug effects
  • Lithium pharmacology
  • Sarcoplasmic Reticulum Calcium-Transporting ATPases metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Exp Physiol] 2020 Apr; Vol. 105 (4), pp. 666-675. <i>Date of Electronic Publication: </i>2020 Mar 18.
  • MeSH Terms: Calcium-Binding Proteins / *metabolism ; Heart Ventricles / *drug effects ; Lithium / *pharmacology ; Sarcoplasmic Reticulum Calcium-Transporting ATPases / *metabolism ; Animals ; Calcium / metabolism ; Cardiomyopathies / metabolism ; Glycogen Synthase Kinase 3 / metabolism ; Heart Failure / metabolism ; Heart Ventricles / metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Muscle Proteins / metabolism ; Myocytes, Cardiac / drug effects ; Myocytes, Cardiac / metabolism ; Phosphorylation / drug effects
  • References: Asahi, M., Nakayama, H., Tada, M., & Otsu, K. (2003). Regulation of sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatase by phospholamban and sarcolipin: Implication for cardiac hypertrophy and failure. Trends in Cardiovascular Medicine, 13, 152-157. ; Baker, D. L., Hashimoto, K., Grupp, I. L., Ji, Y., Reed, T., Loukianov, E., … Periasamy, M. (1998). Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circulation Research, 83, 1205-1214. ; Bers, D. M. (2002). Cardiac excitation-contraction coupling. Nature, 415(6868), 198-205. ; Beurel, E., Grieco, S. F., & Jope, R. S. (2015). Glycogen synthase kinase-3 (GSK3): Regulation, actions, and diseases. Pharmacology & Therapeutics, 148, 114-131. ; Chelko, S. P., Asimaki, A., Andersen, P., Bedja, D., Amat-Alarcon, N., DeMazumder, D., … Judge, D. P. (2016). Central role for GSK3β in the pathogenesis of arrhythmogenic cardiomyopathy. JCI Insight, 1, e85923. ; Chen, Z. (2014). Competitive displacement of wild-type phospholamban from the Ca2+-free cardiac calcium pump by phospholamban mutants with different binding affinities. Journal of Molecular and Cellular Cardiology, 76, 130-137. ; Choi, S. E., Jang, H. J., Kang, Y., Jung, J. G., Han, S. J., Kim, H. J., … Lee, K. W. (2010). Atherosclerosis induced by a high-fat diet is alleviated by lithium chloride via reduction of VCAM expression in ApoE-deficient mice. Vascular Pharmacology, 53, 264-272. ; Crawford, M. D. (1972). Hardness of drinking-water and cardiovascular disease. The Proceedings of the Nutrition Society, 31, 347-353. ; Fajardo, V. A., Bombardier, E., McMillan, E., Tran, K., Wadsworth, B. J., Gamu, D., … Tupling, A. R. (2015). Phospholamban overexpression in mice causes a centronuclear myopathy-like phenotype. Disease Models & Mechanisms, 8, 999-1009. ; Fajardo, V. A., Chambers, P. J., Juracic, E. S., Rietze, B. A., Gamu, D., Bellissimo, C., … Tupling, A. R. (2018). Sarcolipin deletion in mdx mice impairs calcineurin signalling and worsens dystrophic pathology. Human Molecular Genetics, 27, 4094-4102. ; Fajardo, V. A., Fajardo, V. A., LeBlanc, P. J., & MacPherson, R. E. K. (2018). Examining the relationship between trace lithium in drinking water and the rising rates of age-adjusted Alzheimer's disease mortality in Texas. Journal of Alzheimers Disease, 61, 425-434. ; Fajardo, V. A., Mikhaeil, J. S., Leveille, C. F., Tupling, A. R., & LeBlanc, P. J. (2018). Elevated whole muscle phosphatidylcholine: Phosphatidylethanolamine ratio coincides with reduced SERCA activity in murine overloaded plantaris muscles. Lipids in Health and Disease, 17, 47. ; Flepisi, T. B., Lochner, A., & Huisamen, B. (2013). The consequences of long-term glycogen synthase kinase-3 inhibition on normal and insulin resistant rat hearts. Cardiovascular Drugs and Therapy, 27, 381-392. ; Frank, K., & Kranias, E. G. (2000). Phospholamban and cardiac contractility. Annals of Medicine, 32, 572-578. ; Freland, L., & Beaulieu, J.-M. (2012). Inhibition of GSK3 by lithium, from single molecules to signaling networks. Frontiers in Molecular Neuroscience, 5, 14. ; Hardt, S. E., & Sadoshima, S. (2002). Glycogen synthase kinase-3B: a novel regulator of cardiac hypertrophy & development. Circulation Research, 90(10), 1055-1068. ; Jakobsson, E., Argüello-Miranda, O., Chiu, S. W., Fazal, Z., Kruczek, J., Nunez-Corrales, S., … Pritchet, L. (2017). Towards a unified understanding of lithium action in basic biology and its significance for applied biology. Journal of Membrane Biology, 250, 587-604. ; Juurlink, D. N., Mamdani, M. M., Kopp, A., Rochon, P. A., Shulman, K. I., & Redelmeier, D. A. (2004). Drug-induced lithium toxicity in the elderly: A population-based study. Journal of the American Geriatrics Society, 52, 794-798. ; Kadambi, V. J., Ponniah, S., Harrer, J. M., Hoit, B. D., Dorn, G. W., 2nd, Walsh, R. A., & Kranias, E. G. (1996). Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. Journal of Clinical Investigation, 97, 533-539. ; Krishnankutty, A., Kimura, T., Saito, T., Aoyagi, K., Asada, A., Takahashi, S. I., … Hisanaga, S. I. (2017). In vivo regulation of glycogen synthase kinase 3β activity in neurons and brains. Scientific Reports, 7, 8602. ; Kurgan, N., Bott, K. N., Helmeczi, W. E., Roy, B. D., Brindle, I. D., Klentrou, P., & Fajardo, V. A. (2019). Low dose lithium supplementation activates Wnt/β-catenin signalling and increases bone OPG/RANKL ratio in mice. Biochemical and Biophysical Research Communications, 511, 394-397. ; MacLennan, D. H., & Kranias, E. G. (2003). Phospholamban: A crucial regulator of cardiac contractility. Nature Reviews. Molecular Cell Biology, 4, 566-577. ; Makarewich, C. A., Munir, A. Z., Schiattarella, G. G., Bezprozvannaya, S., Raguimova, O. N., Cho, E. E., … Olson, E. N. (2018). The DWORF micropeptide enhances contractility and prevents heart failure in a mouse model of dilated cardiomyopathy. Elife, 7, e38319. ; Malhi, G. S., & Berk, M. (2012). Is the safety of lithium no longer in the balance? The Lancet, 379(9817), 690-692. ; Masironi, R., & Shaper, A. G. (1981). Epidemiological studies of health effects of water from different sources. Annual Review of Nutrition, 1, 375-400. ; Michael, A., Haq, S., Chen, X., Hsich, E., Cui, L., Walters, B., … Force, T. (2004). Glycogen synthase kinase-3β regulates growth, calcium homeostasis, and diastolic function in the heart. Journal of Biological Chemistry, 279, 21383-21393. ; Middlekauff, H. R., Vigna, C., Verity, M. A., Fonarow, G. C., Horwich, T. B., Hamilton, M. A., … Tupling, A. R. (2012). Abnormalities of calcium handling proteins in skeletal muscle mirror those of the heart in humans with heart failure: A shared mechanism? Journal of Cardiac Failure, 18, 724-733. ; Minamisawa, S., Hoshijima, M., Chu, G., Ward, C. A., Frank, K., Gu, Y., … Chien, K. R. (1999). Chronic phospholamban-sarcoplasmic reticulum calcium ATPase interaction is the critical calcium cycling defect in dilated cardiomyopathy. Cell, 99, 313-322. ; Moradi, S., Aminian, A., Abdollahi, A., Jazayeri, A., Ghamami, G., Nikoui, V., … Jazaeri, F. (2019). Cardiac chronotropic hypo-responsiveness and atrial fibrosis in rats chronically treated with lithium. Autonomic Neuroscience, 216, 46-50. ; Nunes, M. A., Schöwe, N. M., Monteiro-Silva, K. C., Baraldi-Tornisielo, T., Souza, S. I., Balthazar, J., … Buck, H. S. (2015). Chronic microdose lithium treatment prevented memory loss and neurohistopathological changes in a transgenic mouse model of Alzheimer's disease. PLoS ONE, 10, e0142267. ; Pap, M., & Cooper, G. M. (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-kinase/Akt cell survival pathway. Journal of Biological Chemistry, 273, 19929-19932. ; Patel, S., Macaulay, K., & Woodgett, J. R. (2011). Tissue-specific analysis of glycogen synthase kinase-3α (GSK-3α) in glucose metabolism: Effect of strain variation. PLoS ONE, 6, e15845. ; Stambolic, V., Ruel, L., & Woodgett, J. R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Current Biology, 6, 1664-1668. ; Suarez, J., Scott, B., & Dillmann, W. H. (2008). Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 295, R1439-R1445. ; Sugden, P. H., Fuller, S. J., Weiss, S. C., & Clerk, A. (2008). Glycogen synthase kinase 3 (GSK3) in the heart: A point of integration in hypertrophic signalling and a therapeutic target? A critical analysis. British Journal of Pharmacology, 153(Suppl 1), S137-S153. ; Takahashi-Yanaga, F. (2013). Activator or inhibitor? GSK-3 as a new drug target. Biochemical Pharmacology, 86, 191-199. ; Vangheluwe, P., Raeymaekers, L., Dode, L., & Wuytack, F. (2005). Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: Cell biological implications. Cell Calcium, 38, 291-302. ; Voors, A. W. (1969). Does lithium depletion cause atherosclerotic heart-disease? Lancet, 2(7634), 1337-1339. ; Voors, A. W. (1970). Lithium depletion and atherosclerotic heart-disease. Lancet, 2(7674), 670. ; Young, H. S., Ceholski, D. K., & Trieber, C. A. (2015). Deception in simplicity: Hereditary phospholamban mutations in dilated cardiomyopathy. Biochemistry and Cell Biology, 93, 1-7.
  • Grant Information: 05833 International Natural Sciences and Engineering Research Council of Canada; International NSERC Doctoral Award; International NSERC Undergraduate Student Research Award; International Brock University Explore Grant
  • Contributed Indexing: Keywords: GSK3; SERCA; calcium; cardiac muscle; lithium supplementation; phospholamban
  • Substance Nomenclature: 0 (Calcium-Binding Proteins) ; 0 (Muscle Proteins) ; 0 (phospholamban) ; 9FN79X2M3F (Lithium) ; EC 2.7.11.26 (Glycogen Synthase Kinase 3) ; EC 3.6.3.8 (Sarcoplasmic Reticulum Calcium-Transporting ATPases) ; EC 7.2.2.10 (Atp2a2 protein, mouse) ; SY7Q814VUP (Calcium)
  • Entry Date(s): Date Created: 20200223 Date Completed: 20210819 Latest Revision: 20210819
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -