Zum Hauptinhalt springen

Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks.

Devbhandari, S ; Remus, D
In: Nature structural & molecular biology, Jg. 27 (2020-05-01), Heft 5, S. 461-471
Online academicJournal

Titel:
Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks.
Autor/in / Beteiligte Person: Devbhandari, S ; Remus, D
Link:
Zeitschrift: Nature structural & molecular biology, Jg. 27 (2020-05-01), Heft 5, S. 461-471
Veröffentlichung: New York : Nature Pub. Group, c2004-, 2020
Medientyp: academicJournal
ISSN: 1545-9985 (electronic)
DOI: 10.1038/s41594-020-0407-7
Schlagwort:
  • Cell Cycle Proteins genetics
  • Checkpoint Kinase 2 genetics
  • DNA Helicases genetics
  • DNA Polymerase II genetics
  • DNA Polymerase II metabolism
  • DNA Polymerase III genetics
  • DNA Polymerase III metabolism
  • DNA Primers
  • DNA, Fungal metabolism
  • DNA-Binding Proteins genetics
  • DNA-Binding Proteins metabolism
  • Mutation
  • Nuclear Proteins genetics
  • Nuclear Proteins metabolism
  • Nucleosomes genetics
  • Plasmids
  • Proliferating Cell Nuclear Antigen genetics
  • Proliferating Cell Nuclear Antigen metabolism
  • Saccharomyces cerevisiae genetics
  • Saccharomyces cerevisiae Proteins genetics
  • Cell Cycle Proteins metabolism
  • Checkpoint Kinase 2 metabolism
  • DNA Helicases metabolism
  • DNA Replication
  • DNA, Fungal biosynthesis
  • Saccharomyces cerevisiae metabolism
  • Saccharomyces cerevisiae Proteins metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural
  • Language: English
  • [Nat Struct Mol Biol] 2020 May; Vol. 27 (5), pp. 461-471. <i>Date of Electronic Publication: </i>2020 Apr 27.
  • MeSH Terms: DNA Replication* ; Cell Cycle Proteins / *metabolism ; Checkpoint Kinase 2 / *metabolism ; DNA Helicases / *metabolism ; DNA, Fungal / *biosynthesis ; Saccharomyces cerevisiae / *metabolism ; Saccharomyces cerevisiae Proteins / *metabolism ; Cell Cycle Proteins / genetics ; Checkpoint Kinase 2 / genetics ; DNA Helicases / genetics ; DNA Polymerase II / genetics ; DNA Polymerase II / metabolism ; DNA Polymerase III / genetics ; DNA Polymerase III / metabolism ; DNA Primers ; DNA, Fungal / metabolism ; DNA-Binding Proteins / genetics ; DNA-Binding Proteins / metabolism ; Mutation ; Nuclear Proteins / genetics ; Nuclear Proteins / metabolism ; Nucleosomes / genetics ; Plasmids ; Proliferating Cell Nuclear Antigen / genetics ; Proliferating Cell Nuclear Antigen / metabolism ; Saccharomyces cerevisiae / genetics ; Saccharomyces cerevisiae Proteins / genetics
  • References: Kim, S., Dallmann, H. G., McHenry, C. S. & Marians, K. J. Coupling of a replicative polymerase and helicase: a tau-DnaB interaction mediates rapid replication fork movement. Cell 84, 643–650 (1996). (PMID: 8598050) ; Manosas, M., Spiering, M. M., Ding, F., Croquette, V. & Benkovic, S. J. Collaborative coupling between polymerase and helicase for leading-strand synthesis. Nucleic Acids Res. 40, 6187–6198 (2012). (PMID: 224348863401439) ; Stano, N. M. et al. DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435, 370–373 (2005). (PMID: 159022621563444) ; Yeeles, J. T. P., Janska, A., Early, A. & Diffley, J. F. X. How the eukaryotic replisome achieves rapid and efficient DNA replication. Mol. Cell 65, 105–116 (2017). (PMID: 279894425222725) ; Georgescu, R. E. et al. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat. Struct. Mol. Biol. 21, 664–670 (2014). (PMID: 249975984482249) ; Taylor, M. R. G. & Yeeles, J. T. P. The initial response of a eukaryotic replisome to DNA damage. Mol. Cell 70, 1067–1080.e12 (2018). (PMID: 299448886024075) ; Taylor, M. R. G. & Yeeles, J. T. P. Dynamics of replication fork progression following helicase–polymerase uncoupling in eukaryotes. J. Mol. Biol. 431, 2040–2049 (2019). (PMID: 308942926525111) ; Walter, J. & Newport, J. Initiation of eukaryotic DNA replication: origin unwinding and sequential chromatin association of Cdc45, RPA, and DNA polymerase α. Mol Cell 5, 617–627 (2000). (PMID: 10882098) ; Sparks, J. L. et al. The CMG helicase bypasses DNA-protein cross-links to facilitate their repair. Cell 176, 167–181.e21 (2019). (PMID: 30595447) ; Gan, H. et al. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress. Mol. Cell 68, 446–455.e3 (2017). (PMID: 290333195802358) ; Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078–1083 (2003). (PMID: 12944972) ; Nedelcheva, M. N. et al. Uncoupling of unwinding from DNA synthesis implies regulation of MCM helicase by Tof1/Mrc1/Csm3 checkpoint complex. J. Mol. Biol. 347, 509–521 (2005). (PMID: 15755447) ; Sabatinos, S. A., Green, M. D. & Forsburg, S. L. Continued DNA synthesis in replication checkpoint mutants leads to fork collapse. Mol. Cell. Biol. 32, 4986–4997 (2012). (PMID: 230453963510540) ; Burnham, D. R., Kose, H. B., Hoyle, R. B. & Yardimci, H. The mechanism of DNA unwinding by the eukaryotic replicative helicase. Nat. Commun. 10, 2159 (2019). (PMID: 310891416517413) ; Graham, J. E., Marians, K. J. & Kowalczykowski, S. C. Independent and stochastic action of DNA polymerases in the replisome. Cell 169, 1201–1213.e17 (2017). (PMID: 286225075548433) ; Pardo, B., Crabbe, L. & Pasero, P. Signaling pathways of replication stress in yeast. FEMS Yeast Res. https://doi.org/10.1093/femsyr/fow101 (2017). ; Byun, T. S., Pacek, M., Yee, M. C., Walter, J. C. & Cimprich, K. A. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040–1052 (2005). (PMID: 158339131091739) ; Tercero, J. A., Longhese, M. P. & Diffley, J. F. A central role for DNA replication forks in checkpoint activation and response. Mol. Cell 11, 1323–1336 (2003). (PMID: 12769855) ; Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557–561 (2001). (PMID: 11484058) ; Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599–602 (2002). (PMID: 12142537) ; De Piccoli, G. et al. Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases. Mol. Cell 45, 696–704 (2012). (PMID: 2232599222325992) ; Dungrawala, H. et al. The replication checkpoint prevents two types of fork collapse without regulating replisome stability. Mol. Cell 59, 998–1010 (2015). (PMID: 263653794575883) ; Szyjka, S. J. et al. Rad53 regulates replication fork restart after DNA damage in Saccharomyces cerevisiae. Genes Dev. 22, 1906–1920 (2008). (PMID: 186283972492737) ; Iyer, D. R. & Rhind, N. Replication fork slowing and stalling are distinct, checkpoint-independent consequences of replicating damaged DNA. PLoS Genet. 13, e1006958 (2017). (PMID: 288067265570505) ; Poli, J. et al. dNTP pools determine fork progression and origin usage under replication stress. EMBO J. 31, 883–894 (2012). (PMID: 222341853280562) ; Tercero, J. A. & Diffley, J. F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001). (PMID: 11484057) ; Devbhandari, S., Jiang, J., Kumar, C., Whitehouse, I. & Remus, D. Chromatin constrains the initiation and elongation of DNA replication. Mol. Cell 65, 131–141 (2017). (PMID: 2798943727989437) ; Bell, S. P. & Labib, K. Chromosome duplication in Saccharomyces cerevisiae. Genetics 203, 1027–1067 (2016). (PMID: 2738402627384026) ; Burgers, P. M. J. & Kunkel, T. A. Eukaryotic DNA replication fork. Annu. Rev. Biochem. 86, 417–438 (2017). (PMID: 283017435597965) ; Tahirov, T. H., Makarova, K. S., Rogozin, I. B., Pavlov, Y. I. & Koonin, E. V. Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors. Biol. Direct 4, 11 (2009). (PMID: 192968562669801) ; Dua, R., Levy, D. L. & Campbell, J. L. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274, 22283–22288 (1999). (PMID: 10428796) ; Kesti, T., Flick, K., Keranen, S., Syvaoja, J. E. & Wittenberg, C. DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3, 679–685 (1999). (PMID: 10360184) ; Yu, C. et al. A mechanism for preventing asymmetric histone segregation onto replicating DNA strands. Science 361, 1386–1389 (2018). (PMID: 65972486597248) ; Schauer, G. D. & O’Donnell, M. E. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Proc. Natl Acad. Sci. USA 114, 675–680 (2017). (PMID: 28069954) ; Baker, T. A., Sekimizu, K., Funnell, B. E. & Kornberg, A. Extensive unwinding of the plasmid template during staged enzymatic initiation of DNA replication from the origin of the Escherichia coli chromosome. Cell 45, 53–64 (1986). (PMID: 3006926) ; Dean, F. B. et al. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc. Natl Acad. Sci. USA 84, 16–20 (1987). (PMID: 3025851) ; Wold, M. S., Li, J. J. & Kelly, T. J. Initiation of simian virus 40 DNA replication in vitro: large-tumor-antigen- and origin-dependent unwinding of the template. Proc. Natl Acad. Sci. USA 84, 3643–3647 (1987). (PMID: 3035543) ; Goswami, P. et al. Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome. Nat. Commun. 9, 5061 (2018). (PMID: 3049821630498216) ; Langston, L. D. et al. CMG helicase and DNA polymerase epsilon form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Proc. Natl Acad. Sci. USA 111, 15390–15395 (2014). (PMID: 25313033) ; Sun, J. et al. The architecture of a eukaryotic replisome. Nat. Struct. Mol. Biol. 22, 976–982 (2015). (PMID: 48498634849863) ; Douglas, M. E., Ali, F. A., Costa, A. & Diffley, J. F. X. The mechanism of eukaryotic CMG helicase activation. Nature 555, 265–268 (2018). (PMID: 294897496847044) ; Georgescu, R. E. et al. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4, e04988 (2015). (PMID: 258718474413876) ; Chilkova, O. et al. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res. 35, 6588–6597 (2007). (PMID: 179058132095795) ; Dua, R., Levy, D. L., Li, C. M., Snow, P. M. & Campbell, J. L. In vivo reconstitution of Saccharomyces cerevisiae DNA polymerase ε in insect cells. Purification and characterization. J. Biol. Chem. 277, 7889–7896 (2002). (PMID: 11756442) ; Ganai, R. A., Bylund, G. O. & Johansson, E. Switching between polymerase and exonuclease sites in DNA polymerase epsilon. Nucleic Acids Res. 43, 932–942 (2015). (PMID: 25550436) ; Garbacz, M. A. et al. Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae. Nat. Commun. 9, 858 (2018). (PMID: 58291665829166) ; Acar, M., Becskei, A. & van Oudenaarden, A. Enhancement of cellular memory by reducing stochastic transitions. Nature 435, 228–232 (2005). (PMID: 15889097) ; Szyjka, S. J., Viggiani, C. J. & Aparicio, O. M. Mrc1 is required for normal progression of replication forks throughout chromatin in S. cerevisiae. Mol. Cell 19, 691–697 (2005). (PMID: 16137624) ; Tourriere, H., Versini, G., Cordon-Preciado, V., Alabert, C. & Pasero, P. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol. Cell 19, 699–706 (2005). (PMID: 16137625) ; Smolka, M. B., Albuquerque, C. P., Chen, S. H. & Zhou, H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proc. Natl Acad. Sci. USA 104, 10364–10369 (2007). (PMID: 17563356) ; Alcasabas, A. A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3, 958–965 (2001). (PMID: 11715016) ; Osborn, A. J. & Elledge, S. J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17, 1755–1767 (2003). (PMID: 12865299196183) ; Can, G., Kauerhof, A. C., Macak, D. & Zegerman, P. Helicase subunit Cdc45 targets the checkpoint kinase Rad53 to both replication initiation and elongation complexes after fork stalling. Mol. Cell 73, 562–573.e3 (2019). (PMID: 305954396375734) ; Langston, L. D. et al. Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks. Elife 6, e29118 (2017). (PMID: 288690375599239) ; Looke, M., Maloney, M. F. & Bell, S. P. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase. Genes Dev. 31, 291–305 (2017). (PMID: 282705175358725) ; Burgers, P. M. Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases δ and ε. J. Biol. Chem. 266, 22698–22706 (1991). (PMID: 1682322) ; Toledo, L. I. et al. ATR prohibits replication catastrophe by preventing global exhaustion of RPA. Cell 155, 1088–1103 (2013). (PMID: 24267891) ; Gomez-Gonzalez, B., Patel, H., Early, A. & Diffley, J. F. X. Rpd3L contributes to the DNA damage sensitivity of Saccharomyces cerevisiae checkpoint mutants. Genetics 211, 503–513 (2019). (PMID: 30559326) ; Ilves, I., Tamberg, N. & Botchan, M. R. Checkpoint kinase 2 (Chk2) inhibits the activity of the Cdc45/MCM2-7/GINS (CMG) replicative helicase complex. Proc. Natl Acad. Sci. USA 109, 13163–13170 (2012). (PMID: 22853956) ; Gilbert, C. S., Green, C. M. & Lowndes, N. F. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8, 129–136 (2001). (PMID: 11511366) ; Gros, J., Devbhandari, S. & Remus, D. Origin plasticity during budding yeast DNA replication in vitro. EMBO J. 33, 621–636 (2014). (PMID: 245669883989655)
  • Grant Information: P30 CA008748 United States CA NCI NIH HHS; R01 GM107239 United States GM NIGMS NIH HHS
  • Substance Nomenclature: 0 (CDC45 protein, S cerevisiae) ; 0 (Cell Cycle Proteins) ; 0 (DNA Primers) ; 0 (DNA, Fungal) ; 0 (DNA-Binding Proteins) ; 0 (Nuclear Proteins) ; 0 (Nucleosomes) ; 0 (POL30 protein, S cerevisiae) ; 0 (Proliferating Cell Nuclear Antigen) ; 0 (Saccharomyces cerevisiae Proteins) ; EC 2.7.1.11 (Checkpoint Kinase 2) ; EC 2.7.12.1 (RAD53 protein, S cerevisiae) ; EC 2.7.7.7 (DNA Polymerase II) ; EC 2.7.7.7 (DNA Polymerase III) ; EC 3.6.4.- (DNA Helicases)
  • Entry Date(s): Date Created: 20200429 Date Completed: 20201001 Latest Revision: 20210331
  • Update Code: 20240513
  • PubMed Central ID: PMC7225081

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -