Zum Hauptinhalt springen

Galanin and neuropeptide Y interactions elicit antidepressant activity linked to neuronal precursor cells of the dentate gyrus in the ventral hippocampus.

Borroto-Escuela, DO ; Pita-Rodriguez, M ; et al.
In: Journal of cellular physiology, Jg. 236 (2021-05-01), Heft 5, S. 3565-3578
Online academicJournal

Titel:
Galanin and neuropeptide Y interactions elicit antidepressant activity linked to neuronal precursor cells of the dentate gyrus in the ventral hippocampus.
Autor/in / Beteiligte Person: Borroto-Escuela, DO ; Pita-Rodriguez, M ; Fores-Pons, R ; Barbancho, MA ; Fuxe, K ; Narváez, M
Link:
Zeitschrift: Journal of cellular physiology, Jg. 236 (2021-05-01), Heft 5, S. 3565-3578
Veröffentlichung: New York, NY : Wiley-Liss ; <i>Original Publication</i>: Philadelphia, Wistar Institute of Anatomy and Biology., 2021
Medientyp: academicJournal
ISSN: 1097-4652 (electronic)
DOI: 10.1002/jcp.30092
Schlagwort:
  • Animals
  • Behavior, Animal
  • Bromodeoxyuridine metabolism
  • Cell Membrane metabolism
  • Cell Proliferation
  • Cells, Cultured
  • Doublecortin Domain Proteins
  • Doublecortin Protein
  • Endocytosis
  • MAP Kinase Signaling System
  • Male
  • Microtubule-Associated Proteins metabolism
  • Neuropeptides metabolism
  • Rats, Sprague-Dawley
  • Receptor, Galanin, Type 2 metabolism
  • Receptors, Neuropeptide Y agonists
  • Receptors, Neuropeptide Y metabolism
  • Serum Response Element genetics
  • Swimming
  • Rats
  • Antidepressive Agents metabolism
  • Dentate Gyrus metabolism
  • Galanin metabolism
  • Neural Stem Cells metabolism
  • Neuropeptide Y metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [J Cell Physiol] 2021 May; Vol. 236 (5), pp. 3565-3578. <i>Date of Electronic Publication: </i>2020 Oct 12.
  • MeSH Terms: Antidepressive Agents / *metabolism ; Dentate Gyrus / *metabolism ; Galanin / *metabolism ; Neural Stem Cells / *metabolism ; Neuropeptide Y / *metabolism ; Animals ; Behavior, Animal ; Bromodeoxyuridine / metabolism ; Cell Membrane / metabolism ; Cell Proliferation ; Cells, Cultured ; Doublecortin Domain Proteins ; Doublecortin Protein ; Endocytosis ; MAP Kinase Signaling System ; Male ; Microtubule-Associated Proteins / metabolism ; Neuropeptides / metabolism ; Rats, Sprague-Dawley ; Receptor, Galanin, Type 2 / metabolism ; Receptors, Neuropeptide Y / agonists ; Receptors, Neuropeptide Y / metabolism ; Serum Response Element / genetics ; Swimming ; Rats
  • References: Abbosh, C., Lawkowski, A., Zaben, M., & Gray, W. (2011). GalR2/3 mediates proliferative and trophic effects of galanin on postnatal hippocampal precursors. Journal of Neurochemistry, 117(3), 425-436. https://doi.org/10.1111/j.1471-4159.2011.07204.x. ; Abrial, E., Betourne, A., Etievant, A., Lucas, G., Scarna, H., Lambas-Senas, L., & Haddjeri, N. (2014). Protein kinase C inhibition rescues manic-like behaviors and hippocampal cell proliferation deficits in the sleep deprivation model of mania. International Journal of Neuropsychopharmacology, 18(2):pyu031. https://doi.org/10.1093/ijnp/pyu031. ; Baptista, P., & Andrade, J. P. (2018). Adult hippocampal neurogenesis: Regulation and possible functional and clinical correlates. Frontiers in Neuroanatomy, 12, 44. https://doi.org/10.3389/fnana.2018.00044. ; Bauman, M. D., Schumann, C. M., Carlson, E. L., Taylor, S. L., Vazquez-Rosa, E., Cintron-Perez, C. J., & Pieper, A. A. (2018). Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Translational Psychiatry, 8(1):202. https://doi.org/10.1038/s41398-018-0244-1. ; Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., & Mann, J. J. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22(4), 589-599 e585. https://doi.org/10.1016/j.stem.2018.03.015. ; Borroto-Escuela, D. O., Hagman, B., Woolfenden, M., Pinton, L., Jiménez-Beristain, A., & Oflijan, J., et al (2016). In situ proximity ligation assay to study and understand the distribution and balance of GPCR homo- and heteroreceptor complexes in the brain. In R. Lujan, & F. Ciruela (Eds.), Receptor and ion channel detection in the brain (Vol. 110, pp. 109-126). Springer. ; Borroto-Escuela, D. O., Li, X., Tarakanov, A. O., Savelli, D., Narvaez, M., Shumilov, K., & Fuxe, K. (2017). Existence of brain 5-HT1A-5-HT2A isoreceptor complexes with antagonistic allosteric receptor-receptor interactions regulating 5-HT1A receptor recognition. ACS Omega, 2(8), 4779-4789. https://doi.org/10.1021/acsomega.7b00629. ; Borroto-Escuela, D. O., Narvaez, M., Marcellino, D., Parrado, C., Narvaez, J. A., Tarakanov, A. O., & Fuxe, K. (2010). Galanin receptor-1 modulates 5-hydroxtryptamine-1A signaling via heterodimerization. Biochemical and Biophysical Research Communications, 393(4), 767-772. https://doi.org/10.1016/j.bbrc.2010.02.078. ; Borroto-Escuela, D. O., Narvaez, M., Di Palma, M., Calvo, F., Rodriguez, D., Millon, C., & Fuxe, K. (2014). Preferential activation by galanin 1-15 fragment of the GalR1 protomer of a GalR1-GalR2 heteroreceptor complex. Biochemical and Biophysical Research Communications, 452(3), 347-353. https://doi.org/10.1016/j.bbrc.2014.08.061. ; Borroto-Escuela, D. O., Romero-Fernandez, W., Mudo, G., Perez-Alea, M., Ciruela, F., Tarakanov, A. O., & Fuxe, K. (2012). Fibroblast growth factor receptor 1- 5-hydroxytryptamine 1A heteroreceptor complexes and their enhancement of hippocampal plasticity. Biological Psychiatry, 71(1), 84-91. https://doi.org/10.1016/j.biopsych.2011.09.012. ; Branchek, T. A., Smith, K. E., Gerald, C., & Walker, M. W. (2000). Galanin receptor subtypes. Trends In Pharmacological Sciences, 21(3), 109-117. https://doi.org/10.1016/s0165-6147(00)01446-2. ; Catena-Dell'Osso, M., Fagiolini, A., Marazziti, D., Baroni, S., & Bellantuono, C. (2013). Non-monoaminergic targets for the development of antidepressants: Focus on neuropeptides. Mini Reviews in Medicinal Chemistry, 13(1), 2-10. ; Chen, P. (2019). Optimized treatment strategy for depressive disorder. Advances in Experimental Medicine and Biology, 1180, 201-217. https://doi.org/10.1007/978-981-32-9271-0_11. ; Cheung, A., Newland, P. L., Zaben, M., Attard, G. S., & Gray, W. P. (2012). Intracellular nitric oxide mediates neuroproliferative effect of neuropeptide y on postnatal hippocampal precursor cells. Journal of Biological Chemistry, 287(24), 20187-20196. https://doi.org/10.1074/jbc.M112.346783. ; Cipriani, S., Ferrer, I., Aronica, E., Kovacs, G. G., Verney, C., Nardelli, J., & Adle-Biassette, H. (2018). Hippocampal radial glial subtypes and their neurogenic potential in human fetuses and healthy and Alzheimer's disease adults. Cerebral Cortex, 28(7), 2458-2478. https://doi.org/10.1093/cercor/bhy096. ; Decressac, M., Wright, B., David, B., Tyers, P., Jaber, M., Barker, R. A., & Gaillard, A. (2011). Exogenous neuropeptide Y promotes in vivo hippocampal neurogenesis. Hippocampus, 21(3), 233-238. https://doi.org/10.1002/hipo.20765. ; Diaz-Cabiale, Z., Parrado, C., Narvaez, M., Puigcerver, A., Millon, C., Santin, L., & Narvaez, J. A. (2011). Galanin receptor/neuropeptide Y receptor interactions in the dorsal raphe nucleus of the rat. Neuropharmacology, 61(1-2), 80-86. https://doi.org/10.1016/j.neuropharm.2011.03.002. ; DiazGranados, N., Ibrahim, L. A., Brutsche, N. E., Ameli, R., Henter, I. D., Luckenbaugh, D. A., & Zarate, C. A., Jr. (2010). Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. Journal of Clinical Psychiatry, 71(12), 1605-1611. https://doi.org/10.4088/JCP.09m05327blu. ; Eriksson, P. S., Perfilieva, E., Bjork-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 1313-1317. https://doi.org/10.1038/3305. ; Fanselow, M. S., & Dong, H. W. (2010). Are the dorsal and ventral hippocampus functionally distinct structures? Neuron, 65(1), 7-19. https://doi.org/10.1016/j.neuron.2009.11.031. ; Fuxe, K., Agnati, L., Aguirre, J., Bjelke, B., Tinner, B., Merlo-Pich, E., & Eneroth, P. (1991). On the existence of volume transmission in the central neuropeptide Y neuronal systems. Studies on transmitter receptor mismatches and on biological effects of neuropeptide Y fragments. In K. Fuxe, & L. F. Agnati (Eds.), Advances in neuroscience, volume transmission in the brain, novel mechanisms for neural transmission (pp. 105-130). Raven Press, Ltd. ; Fuxe, K., & Borroto-Escuela, D. O. (2018). Receptor-receptor interactions in the central nervous system (Vol. 140, p. 346). Humana Press. ; Gehlert, D. R., Schober, D. A., Morin, M., & Berglund, M. M. (2007). Co-expression of neuropeptide Y Y1 and Y5 receptors results in heterodimerization and altered functional properties. Biochemical Pharmacology, 74(11), 1652-1664. https://doi.org/10.1016/j.bcp.2007.08.017. ; Geloso, M. C., Corvino, V., Di Maria, V., Marchese, E., & Michetti, F. (2015). Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Frontiers in Cellular Neuroscience, 9, 85. https://doi.org/10.3389/fncel.2015.00085. ; Gigliucci, V., O'Dowd, G., Casey, S., Egan, D., Gibney, S., & Harkin, A. (2013). Ketamine elicits sustained antidepressant-like activity via a serotonin-dependent mechanism. Psychopharmacology, 228(1), 157-166. https://doi.org/10.1007/s00213-013-3024-x. ; Harmer, C. J., Duman, R. S., & Cowen, P. J. (2017). How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry, 4(5), 409-418. https://doi.org/10.1016/S2215-0366(17)30015-9. ; Howell, O. W., Scharfman, H. E., Herzog, H., Sundstrom, L. E., Beck-Sickinger, A., & Gray, W. P. (2003). Neuropeptide Y is neuroproliferative for post-natal hippocampal precursor cells. Journal of Neurochemistry, 86(3), 646-659. https://doi.org/10.1046/j.1471-4159.2003.01895.x. ; Howell, O. W., Silva, S., Scharfman, H. E., Sosunov, A. A., Zaben, M., Shtaya, A., & Gray, W. P. (2007). Neuropeptide Y is important for basal and seizure-induced precursor cell proliferation in the hippocampus. Neurobiology of Disease, 26(1), 174-188. https://doi.org/10.1016/j.nbd.2006.12.014. ; Jimenez-Vasquez, P. A., Diaz-Cabiale, Z., Caberlotto, L., Bellido, I., Overstreet, D., Fuxe, K., & Mathe, A. A. (2007). Electroconvulsive stimuli selectively affect behavior and neuropeptide Y (NPY) and NPY Y(1) receptor gene expressions in hippocampus and hypothalamus of Flinders Sensitive Line rat model of depression. European Neuropsychopharmacology, 17(4), 298-308. https://doi.org/10.1016/j.euroneuro.2006.06.011. ; Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., & Frisen, J. (2018). Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell, 23(1), 25-30. https://doi.org/10.1016/j.stem.2018.04.004. ; Kempermann, G., Song, H., & Gage, F. H. (2015). Neurogenesis in the adult hippocampus. Cold Spring Harbor Perspectives in Biology, 7(9):a018812. https://doi.org/10.1101/cshperspect.a018812. ; Koike, H., & Chaki, S. (2014). Requirement of AMPA receptor stimulation for the sustained antidepressant activity of Ketamine and LY341495 during the forced swim test in rats. Behavioural Brain Research, 271, 111-115. https://doi.org/10.1016/j.bbr.2014.05.065. ; Kormos, V., & Gaszner, B. (2013). Role of neuropeptides in anxiety, stress, and depression: from animals to humans. Neuropeptides, 47(6), 401-419. https://doi.org/10.1016/j.npep.2013.10.014. ; Kotagale, N. R., Paliwal, N. P., Aglawe, M. M., Umekar, M. J., & Taksande, B. G. (2013). Possible involvement of neuropeptide Y Y1 receptors in antidepressant like effect of agmatine in rats. Peptides, 47, 7-11. https://doi.org/10.1016/j.peptides.2013.04.018. ; Kuteeva, E., Wardi, T., Lundstrom, L., Sollenberg, U., Langel, U., Hokfelt, T., & Ogren, S. O. (2008). Differential role of galanin receptors in the regulation of depression-like behavior and monoamine/stress-related genes at the cell body level. Neuropsychopharmacology, 33(11), 2573-2585. https://doi.org/10.1038/sj.npp.1301660. ; Li, B. S., Ma, W., Zhang, L., Barker, J. L., Stenger, D. A., & Pant, H. C. (2001). Activation of phosphatidylinositol-3 kinase (PI-3K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. Journal of Neuroscience, 21(5), 1569-1579. ; Lu, X., Ross, B., Sanchez-Alavez, M., Zorrilla, E. P., & Bartfai, T. (2008). Phenotypic analysis of GalR2 knockout mice in anxiety- and depression-related behavioral tests. Neuropeptides, 42(4), 387-397. https://doi.org/10.1016/j.npep.2008.04.009. ; Luo, H., Liu, Z., Liu, B., Li, H., Yang, Y., & Xu, Z. D. (2019). Virus-mediated overexpression of ETS-1 in the ventral hippocampus counteracts depression-like behaviors in rats. Neuroscience Bulletin, 35(6), 1035-1044. https://doi.org/10.1007/s12264-019-00412-6. ; Mathe, A. A., Jimenez, P. A., Theodorsson, E., & Stenfors, C. (1998). Neuropeptide Y, neurokinin A and neurotensin in brain regions of Fawn Hooded "depressed", Wistar, and Sprague Dawley rats. Effects of electroconvulsive stimuli. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 22(3), 529-546. https://doi.org/10.1016/s0278-5846(98)00023-2. ; McKay, M. M., & Morrison, D. K. (2007). Integrating signals from RTKs to ERK/MAPK. Oncogene, 26(22), 3113-3121. https://doi.org/10.1038/sj.onc.1210394. ; Miller, B. R., & Hen, R. (2015). The current state of the neurogenic theory of depression and anxiety. Current Opinion in Neurobiology, 30, 51-58. https://doi.org/10.1016/j.conb.2014.08.012. ; Moreno-Jimenez, E. P., Flor-Garcia, M., Terreros-Roncal, J., Rabano, A., Cafini, F., Pallas-Bazarra, N., & Llorens-Martin, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nature Medicine, 25(4), 554-560. https://doi.org/10.1038/s41591-019-0375-9. ; Narvaez, M., Andrade-Talavera, Y., Valladolid-Acebes, I., Fredriksson, M., Siegele, P., Hernandez-Sosa, A., & Borroto-Escuela, D. O. (2020). Existence of FGFR1-5-HT1AR heteroreceptor complexes in hippocampal astrocytes. Putative link to 5-HT and FGF2 modulation of hippocampal gamma oscillations. Neuropharmacology, 170, 108070. https://doi.org/10.1016/j.neuropharm.2020.108070. ; Narvaez, M., Borroto-Escuela, D. O., Millon, C., Gago, B., Flores-Burgess, A., Santin, L., & Diaz-Cabiale, Z. (2016). Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the dentate gyrus are related with antidepressant-like effects. Brain Structure & Function, 221(8), 4129-4139. https://doi.org/10.1007/s00429-015-1153-1. ; Narvaez, M., Borroto-Escuela, D. O., Santin, L., Millon, C., Gago, B., Flores-Burgess, A., & Fuxe, K. (2018). A novel integrative mechanism in anxiolytic behavior induced by galanin 2/neuropeptide Y Y1 receptor interactions on medial paracapsular intercalated amygdala in rats. Frontiers in Cellular Neuroscience, 12, 119. https://doi.org/10.3389/fncel.2018.00119. ; Narvaez, M., Millon, C., Borroto-Escuela, D., Flores-Burgess, A., Santin, L., Parrado, C., & Diaz-Cabiale, Z. (2015). Galanin receptor 2-neuropeptide Y Y1 receptor interactions in the amygdala lead to increased anxiolytic actions. Brain Structure & Function, 220(4), 2289-2301. https://doi.org/10.1007/s00429-014-0788-7. ; O'Donnell, D., Ahmad, S., Wahlestedt, C., & Walker, P. (1999). Expression of the novel galanin receptor subtype GALR2 in the adult rat CNS: distinct distribution from GALR1. Journal of Comparative Neurology, 409(3), 469-481. ; Paxinos, G., & Watson, C. (1998). The Rat Brain in Stereotaxic Coordinates. 4th ed., Academic Press. ; Petit-Demouliere, B., Chenu, F., & Bourin, M. (2005). Forced swimming test in mice: A review of antidepressant activity. Psychopharmacology, 177(3), 245-255. https://doi.org/10.1007/s00213-004-2048-7. ; Pilar-Cuellar, F., Vidal, R., & Pazos, A. (2012). Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, beta-catenin, and antidepressant-like effects. British Journal of Pharmacology, 165(4b), 1046-1057. https://doi.org/10.1111/j.1476-5381.2011.01516.x. ; Porsolt, R. D., Le Pichon, M., & Jalfre, M. (1977). Depression: A new animal model sensitive to antidepressant treatments. Nature, 266(5604), 730-732. https://doi.org/10.1038/266730a0. ; Redrobe, J. P., Dumont, Y., Fournier, A., & Quirion, R. (2002). The neuropeptide Y (NPY) Y1 receptor subtype mediates NPY-induced antidepressant-like activity in the mouse forced swimming test. Neuropsychopharmacology, 26(5), 615-624. https://doi.org/10.1016/S0893-133X(01)00403-1. ; Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., & Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 555(7696), 377-381. https://doi.org/10.1038/nature25975. ; Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., & Frisen, J. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6), 1219-1227. https://doi.org/10.1016/j.cell.2013.05.002. ; Sperk, G., Hamilton, T., & Colmers, W. F. (2007). Neuropeptide Y in the dentate gyrus. Progress in Brain Research, 163, 285-297. https://doi.org/10.1016/S0079-6123(07)63017-9. ; Tanti, A., & Belzung, C. (2013). Neurogenesis along the septo-temporal axis of the hippocampus: are depression and the action of antidepressants region-specific? Neuroscience, 252, 234-252. https://doi.org/10.1016/j.neuroscience.2013.08.017. ; Vega-Rivera, N. M., Fernandez-Guasti, A., Ramirez-Rodriguez, G., & Estrada-Camarena, E. (2015). Effect of sub-optimal doses of fluoxetine plus estradiol on antidepressant-like behavior and hippocampal neurogenesis in ovariectomized rats. Psychoneuroendocrinology, 57, 113-124. https://doi.org/10.1016/j.psyneuen.2015.03.022. ; Walker, A. K., Rivera, P. D., Wang, Q., Chuang, J. C., Tran, S., Osborne-Lawrence, S., & Zigman, J. M. (2015). The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis. Molecular Psychiatry, 20(4), 500-508. https://doi.org/10.1038/mp.2014.34. ; World Health Organization. (2017). Depression and other common mental disorders: global health estimates. World Health Organization. ; Xia, S., Kjaer, S., Zheng, K., Hu, P. S., Xu, T., Hokfelt, T., & Xu, Z. Q. (2005). Constitutive and ligand-induced internalization of EGFP-tagged galanin R2 and Rl receptors in PC12 cells. Neuropeptides, 39(3), 173-178. https://doi.org/10.1016/j.npep.2005.02.001. ; Zaben, M. J., & Gray, W. P. (2013). Neuropeptides and hippocampal neurogenesis. Neuropeptides, 47(6), 431-438. https://doi.org/10.1016/j.npep.2013.10.002.
  • Contributed Indexing: Keywords: Depression; Galanin; Neuropeptide Y; Neuropeptides; Receptor interaction
  • Substance Nomenclature: 0 (Antidepressive Agents) ; 0 (Dcx protein, rat) ; 0 (Doublecortin Domain Proteins) ; 0 (Doublecortin Protein) ; 0 (Microtubule-Associated Proteins) ; 0 (Neuropeptide Y) ; 0 (Neuropeptides) ; 0 (Receptor, Galanin, Type 2) ; 0 (Receptors, Neuropeptide Y) ; 0 (neuropeptide Y-Y1 receptor) ; 88813-36-9 (Galanin) ; G34N38R2N1 (Bromodeoxyuridine)
  • Entry Date(s): Date Created: 20201012 Date Completed: 20210929 Latest Revision: 20240226
  • Update Code: 20240226

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -