Zum Hauptinhalt springen

Continuous Aerobic Exercise Prevents Detrimental Remodeling and Right Heart Myocyte Contraction and Calcium Cycling Dysfunction in Pulmonary Artery Hypertension.

Silva, FJ ; Drummond, FR ; et al.
In: Journal of cardiovascular pharmacology, Jg. 77 (2021), Heft 1, S. 69-78
Online academicJournal

Titel:
Continuous Aerobic Exercise Prevents Detrimental Remodeling and Right Heart Myocyte Contraction and Calcium Cycling Dysfunction in Pulmonary Artery Hypertension.
Autor/in / Beteiligte Person: Silva, FJ ; Drummond, FR ; Fidelis, MR ; Freitas, MO ; Leal, TF ; de Rezende LMT ; de Moura AG ; Carlo Reis, EC ; Natali, AJ
Link:
Zeitschrift: Journal of cardiovascular pharmacology, Jg. 77 (2021), Heft 1, S. 69-78
Veröffentlichung: Hagerstown, MD : Lippincott Williams & Wilkins ; <i>Original Publication</i>: New York, Raven Press., 2021
Medientyp: academicJournal
ISSN: 1533-4023 (electronic)
DOI: 10.1097/FJC.0000000000000928
Schlagwort:
  • Airway Remodeling
  • Animals
  • Arterial Pressure
  • Disease Models, Animal
  • Hypertrophy, Right Ventricular metabolism
  • Hypertrophy, Right Ventricular pathology
  • Hypertrophy, Right Ventricular physiopathology
  • Male
  • Myocytes, Cardiac pathology
  • Pulmonary Arterial Hypertension metabolism
  • Pulmonary Arterial Hypertension pathology
  • Pulmonary Arterial Hypertension physiopathology
  • Pulmonary Artery physiopathology
  • Rats, Wistar
  • Vascular Resistance
  • Ventricular Dysfunction, Right metabolism
  • Ventricular Dysfunction, Right pathology
  • Ventricular Dysfunction, Right physiopathology
  • Rats
  • Calcium Signaling
  • Exercise Therapy
  • Hypertrophy, Right Ventricular prevention & control
  • Myocardial Contraction
  • Myocytes, Cardiac metabolism
  • Pulmonary Arterial Hypertension therapy
  • Ventricular Dysfunction, Right prevention & control
  • Ventricular Function, Right
  • Ventricular Remodeling
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [J Cardiovasc Pharmacol] 2021 Jan 01; Vol. 77 (1), pp. 69-78.
  • MeSH Terms: Calcium Signaling* ; Exercise Therapy* ; Myocardial Contraction* ; Ventricular Function, Right* ; Ventricular Remodeling* ; Hypertrophy, Right Ventricular / *prevention & control ; Myocytes, Cardiac / *metabolism ; Pulmonary Arterial Hypertension / *therapy ; Ventricular Dysfunction, Right / *prevention & control ; Airway Remodeling ; Animals ; Arterial Pressure ; Disease Models, Animal ; Hypertrophy, Right Ventricular / metabolism ; Hypertrophy, Right Ventricular / pathology ; Hypertrophy, Right Ventricular / physiopathology ; Male ; Myocytes, Cardiac / pathology ; Pulmonary Arterial Hypertension / metabolism ; Pulmonary Arterial Hypertension / pathology ; Pulmonary Arterial Hypertension / physiopathology ; Pulmonary Artery / physiopathology ; Rats, Wistar ; Vascular Resistance ; Ventricular Dysfunction, Right / metabolism ; Ventricular Dysfunction, Right / pathology ; Ventricular Dysfunction, Right / physiopathology ; Rats
  • References: Vaillancourt M, Ruffenach G, Meloche J, et al. Adaptation and remodelling of the pulmonary circulation in pulmonary hypertension. Can J Cardiol. 2015;31:407–415. ; Budhiraja R, Tuder RM, Hassoun PM. Endothelial dysfunction in pulmonary hypertension. Circulation. 2004;109:159–165. ; Lai YC, Potoka KC, Champion HC, et al. Pulmonary arterial hypertension the clinical syndrome. Circ Res. 2014;115:115–130. ; Thenappan T, Chan SY, Weir EK. Role of extracellular matrix in the pathogenesis of pulmonary arterial hypertension. Am J Physiol Heart Circ Physiol. 2015;315:H1322–H1331. ; Tan W, Madhavan K, Hunter KS, et al. Vascular stiffening in pulmonary hypertension: cause or consequence? Pulm Circ. 2014;4:560–580. ; Campo A, Mathai SC, Le Pavec J, et al. Hemodynamic predictors of survival in scleroderma-related pulmonary arterial hypertension. Am J Respir Crit Care Med. 2010;182:252–260. ; Gan CT-J, Lankhaar JW, Westerhof N, et al. Noninvasively assessed pulmonary artery stiffness predicts mortality in pulmonary arterial hypertension. Chest. 2007;132:1906–1912. ; Mahapatra S, Nishimura RA, Sorajja P, et al. Relationship of pulmonary arterial capacitance and mortality in idiopathic pulmonary arterial hypertension. J Am Coll Cardiol. 2006;47:799–803. ; Pellegrini P, Rossi A, Pasotti M, et al. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest. 2014;145:1064–1070. ; Haddad F, Doyle R, Murphy DJ, et al. Right ventricular function in cardiovascular disease, part II pathophysiology, clinical importance, and management of right ventricular failure. Circulation. 2008;117:1717–1731. ; Soares LL, Drummond FR, Rezende LMT, et al. Voluntary running counteracts right ventricular adverse remodeling and myocyte contraction impairment in pulmonary arterial hypertension model. Life Sci. 2019;238:116974. ; Ryan JJ, Archer SL. The right ventricle in pulmonary arterial hypertension: disorders of metabolism, angiogenesis and adrenergic signaling in right ventricular failure. Circ Res. 2014;115:176–188. ; Kusakari Y, Urashima T, Shimura D, et al. Impairment of excitation-contraction coupling in right ventricular hypertrophied muscle with fibrosis induced by pulmonary artery banding. PLoS One. 2017;12:e0169564. ; Fowler ED, Benoist D, Drinkhill MJ, et al. Decreased creatine kinase is linked to diastolic dysfunction in rats with right heart failure induced by pulmonary artery hypertension. J Mol Cell Cardiol. 2015;86:1–8. ; Fowler ED, Drinkhill MJ, Norman R, et al. Beta1-adrenoceptor antagonist, metoprolol attenuates cardiac myocyte Ca2+ handling dysfunction in rats with pulmonary artery hypertension. J Mol Cell Cardiol. 2018;120:74–83. ; Eisner DA, Caldwell JL, Kistamás K, et al. Calcium and excitation contraction coupling in the heart. Circ Res. 2017;121:181–195. ; Mayourian J, Ceholski DK, Gonzalez DM, et al. Physiologic, pathologic, and therapeutic paracrine modulation of cardiac excitation-contraction coupling. Circ Res. 2018;122:167–183. ; Benoist D, Stones R, Drinkhill MJ, et al. Cardiac arrhythmia mechanisms in rats with heart failure induced by pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2012;302:H2381–H2395. ; Chin KM, Kim NH, Rubin LJ. The right ventricle in pulmonary hypertension. Coron Artery Dis. 2005;16:13–18. ; McGoon MD, Benza RL, Escribano-Subias P, et al. Pulmonary arterial hypertension: epidemiology and registries. J Am Coll Cardiol. 2013;62(25 suppl):D51–D59. ; Zafrir B. Exercise training and rehabilitation in pulmonary arterial hypertension: rationale and current data evaluation. J Cardiopulm Rehabil Prev. 2013;33:263–273. ; Sahni S, Capozzi B, Iftikhar A, et al. Pulmonary rehabilitation and exercise in pulmonary arterial hypertension: an underutilized intervention. J Exerc Rehabil. 2015;11:74–79. ; Lajoie AC, Bonnet S, Provencher S. Combination therapy in pulmonary arterial hypertension: recent accomplishments and future challenges. Pulm Circ. 2017;7:312–325. ; Stenmark KR, Meyrick B, Galie N, et al. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013–L1032. ; Gomez-Arroyo JG, Farkas L, Alhussaini AA, et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 2012;302:L363–L369. ; Yuan P, Yuan XT, Sun XY, et al. Exercise training for pulmonary hypertension: a systematic review and meta-analysis. Int J Cardiol. 2015;178:142–146. ; Soares LL, Drummond FR, Lavorato VN, et al. Exercise training and pulmonary arterial hypertension: a review of the cardiac benefits. Sci Sport. 2018;33:197–206. ; Nogueira-Ferreira R, Moreira-Gonçalves D, Santos M, et al. Mechanisms underlying the impact of exercise training in pulmonary arterial hypertension. Respir Med. 2018;134:70–78. ; Souza-Rabbo MP, Silva LF, Auzani JA, et al. Effects of a chronic exercise training protocol on oxidative stress and right ventricular hypertrophy in monocrotaline-treated rats. Clin Exp Pharmacol Physiol. 2008;35:944–948. ; Colombo R, Siqueira R, Becker CU, et al. Effects of exercise on monocrotaline-induced changes in right heart function and pulmonary artery remodeling in rats. Can J Physiol Pharmacol. 2013;91:38–44. ; Colombo R, Siqueira R, Conzatti A, et al. Aerobic exercise promotes a decrease in right ventricle apoptotic proteins in experimental cor pulmonale. J Cardiovasc Pharmacol. 2015;66:246–253. ; Moreira-Goncalves D, Ferreira R, Fonseca H, et al. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension. Basic Res Cardiol. 2015;110:57. ; Colombo R, Siqueira R, Conzatti A, et al. Exercise training contributes to H2O2/VEGF signaling in the lung of rats with monocrotaline-induced pulmonary hypertension. Vasc Pharmacol. 2016;87(suppl. C):49–59. ; Pacagnelli FL, Sabela AKA, Okoshi K, et al. Preventive aerobic training exerts a cardioprotective effect on rats treated with monocrotaline. Int J Exp Pathol. 2016;97:238–247. ; Nogueira-Ferreira R, Moreira-Goncalves D, Silva AF, et al. Exercise preconditioning prevents MCT-induced right ventricle remodeling through the regulation of TNF superfamily cytokines. Int J Cardiol. 2016;203:858–866. ; Handoko ML, de Man FS, Happe CM, et al. Opposite effects of training in rats with stable and progressive pulmonary hypertension. Circulation. 2009;120:42–49. ; Zimmer A, Teixeira RB, Bonetto JH, et al. Effects of aerobic exercise training on metabolism of nitric oxide and endothelin-1 in lung parenchyma of rats with pulmonary arterial hypertension. Mol Cell Biochem. 2017;429:73–89. ; Natali AJ, Fowler ED, Calaghan SC, et al. Voluntary exercise delays heart failure onset in rats with pulmonary artery hypertension. Am J Physiol Heart Circ Physiol. 2015;309:H421–H424. ; Benoist D, Stones R, Benson AP, et al. Systems approach to the study of stretch and arrhythmias in right ventricular failure induced in rats by monocrotaline. Prog Biophys Mol Biol. 2014;115:162–172. ; Lacerda AC, Marubayashi U, Balthazar CH, et al. Central nitric oxide inhibition modifies metabolic adjustments induced by exercise in rats. Neurosci Lett. 2006;410:152–156. ; Sahn DJ, DeMaria A, Kisslo J, et al. Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circulation. 1978;58:1072–1083. ; Silva E, Natali AJ, Silva MF, et al. Ventricular remodeling in growing rats with experimental diabetes: the impact of swimming training. Pathol Res Pract. 2013;209:618–626. ; Natali AJ, Wilson LA, Peckmam M, et al. Different regional effects of voluntary exercise on the mechanical and electrical properties of rat ventricular myocytes. J Physiol. 2002;541:863–875. ; Carneiro-Júnior MA, Quintão-Júnior JF, Drummond LR, et al. The benefits of endurance training in cardiomyocyte function in hypertensive rats are reversed within four weeks of detraining. J Mol Cell Cardiol. 2013;57:119–128. ; Satoh H, Delbridge LMD, Blatter LA, et al. Surface:volume relationship in cardiac myocytes studied with confocal microscopy and membrane capacitance measurements: species-dependence and development effects. Biophys J. 1996;70:1494–1504. ; Meyrick B, Gamble W, Reid L. Development of Crotalaria pulmonary hypertension: hemodynamic and structural study. Am J Physiol Heart Circ Physiol. 1908;239:H692–H702. ; Hessel HM, Steendijk P, den Adel B, et al. Characterization of right ventricular function after monocrotaline-induced pulmonary hypertension in the intact rat. Am J Phys Heart Circ Physiol. 2006;291:H2424–H2430. ; Aggarwal S, Gross CM, Sharma S, et al. Reactive oxygen species in pulmonary vascular remodeling. Compr Physiol. 2013;3:1011–1034. ; Guarnieri C, Muscari C. Beneficial effects of trimetazidine on mitochondrial function and superoxide production in the cardiac muscle of monocrotaline-treated rats. Biochem Pharmacol. 1988;37:4685–4688. ; Brown MB, Chingombe TJ, Zinn AB, et al. Novel assessment of haemodynamic kinetics with acute exercise in a rat model of pulmonary arterial hypertension. Exp Physiol. 2015;100:742–754. ; Peng X, Abdulnour REE, Sammani S, et al. Inducible nitric oxide synthase contributes to ventilator-induced lung injury. Am J Respir Crit Care Med. 2005;172:470–479. ; Seta F, Rahmani M, Turner PV, et al. Pulmonary oxidative stress is increased in cyclooxygenase-2 knockdown mice with mild pulmonary hypertension induced by monocrotaline. PLoS One. 2011;6:e23439. ; Shao D, Park JE, Wort SJ. The role of endothelin-1 in the pathogenesis of pulmonary arterial hypertension. Pharmacol Res. 2011;63:504–511. ; Parikh RV, Ma Y, Scherzer R, et al. Endothelin-1 predicts Hemodynamically assessed pulmonary arterial hypertension in HIV infection. PLoS One. 2016;11:e0146355. ; Wang Z, Patel JR, Schreier DA, et al. Organ-level right ventricular dysfunction with preserved Frank-Starling mechanism in a mouse model of pulmonary arterial hypertension. J Appl Physiol. 2018;124:1244–1253. ; Bogaard HJ, Abe K, Vonk Noordegraaf A, et al. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest. 2009;135:794–804. ; Bers DM. Cardiac excitation-contraction coupling. Nature. 2002;415:198–205. ; Mereles D, Ehlken N, Kreuscher S, et al. Exercise and respiratory training improve exercise capacity and quality of life in patients with severe chronic pulmonary hypertension. Circulation. 2006;114:1482–1489. ; Ley S, Fink C, Risse F, et al. Magnetic resonance imaging to assess the effect of exercise training on pulmonary perfusion and blood flow in patients with pulmonary hypertension. Eur Radiol. 2013;23:324–331. ; Weinstein AA, Chin LM, Keyser RE, et al. Effect of aerobic exercise training on fatigue and physical activity in patients with pulmonary arterial hypertension. Respir Med. 2013;107:778–784. ; Kashimura O, Sakai A, Yanagidaira Y. Effects of exercise-training on hypoxia and angiotensin II-induced pulmonary vasoconstrictions. Acta Physiol Scand. 1995;155:291–295. ; Batt J, Ahmed SS, Correa J, et al. Skeletal muscle dysfunction in idiopathic pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 2014;50:74–86. ; Panagiotou M, Peacock AJ, Johnson MK. Respiratory and limb muscle dysfunction in pulmonary arterial hypertension: a role for exercise training? Pulm Circ. 2015;5:424–434. ; de Man FS, Handoko ML, Groepenhoff H, et al. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2009;34:669–675. ; McCullough DJ, Kue N, Mancini T, et al. Endurance exercise training in pulmonary hypertension increases skeletal muscle electron transport chain supercomplex assembly. Pulm Circ. 2020;10:1–11. ; Gonçalves D, Henriques-Coelho T, Ferreira R, et al. Exercise preconditioning prevents skeletal muscle wasting in monocrotaline-induced cardiac cachexia. FASEB J. 2012;26(1 suppl):1078–1131.
  • Entry Date(s): Date Created: 20201016 Date Completed: 20210714 Latest Revision: 20240226
  • Update Code: 20240226

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -