Zum Hauptinhalt springen

Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment.

Chua, XY ; Ho, LTY ; et al.
In: Neuromolecular medicine, Jg. 23 (2021-03-01), Heft 1, S. 47-67
Online academicJournal

Titel:
Preclinical and Clinical Evidence for the Involvement of Sphingosine 1-Phosphate Signaling in the Pathophysiology of Vascular Cognitive Impairment.
Autor/in / Beteiligte Person: Chua, XY ; Ho, LTY ; Xiang, P ; Chew, WS ; Lam, BWS ; Chen, CP ; Ong, WY ; Lai, MKP ; Herr, DR
Link:
Zeitschrift: Neuromolecular medicine, Jg. 23 (2021-03-01), Heft 1, S. 47-67
Veröffentlichung: Totowa, NJ : Humana Press, c2002-, 2021
Medientyp: academicJournal
ISSN: 1559-1174 (electronic)
DOI: 10.1007/s12017-020-08632-0
Schlagwort:
  • Aldehyde-Lyases antagonists & inhibitors
  • Aldehyde-Lyases physiology
  • Alzheimer Disease physiopathology
  • Animals
  • Cerebrovascular Disorders physiopathology
  • Clinical Trials as Topic
  • Drug Delivery Systems
  • Drug Evaluation, Preclinical
  • Fingolimod Hydrochloride therapeutic use
  • Humans
  • Infarction, Middle Cerebral Artery drug therapy
  • Infarction, Middle Cerebral Artery physiopathology
  • Inflammation
  • Ischemic Stroke drug therapy
  • Ischemic Stroke physiopathology
  • Mice
  • Mice, Knockout
  • Neurodegenerative Diseases drug therapy
  • Neurodegenerative Diseases physiopathology
  • Phosphotransferases (Alcohol Group Acceptor) antagonists & inhibitors
  • Phosphotransferases (Alcohol Group Acceptor) deficiency
  • Phosphotransferases (Alcohol Group Acceptor) physiology
  • Signal Transduction
  • Sphingosine physiology
  • Sphingosine-1-Phosphate Receptors drug effects
  • Dementia, Vascular physiopathology
  • Lysophospholipids physiology
  • Sphingosine analogs & derivatives
  • Sphingosine-1-Phosphate Receptors physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Review
  • Language: English
  • [Neuromolecular Med] 2021 Mar; Vol. 23 (1), pp. 47-67. <i>Date of Electronic Publication: </i>2020 Nov 12.
  • MeSH Terms: Dementia, Vascular / *physiopathology ; Lysophospholipids / *physiology ; Sphingosine / *analogs & derivatives ; Sphingosine-1-Phosphate Receptors / *physiology ; Aldehyde-Lyases / antagonists & inhibitors ; Aldehyde-Lyases / physiology ; Alzheimer Disease / physiopathology ; Animals ; Cerebrovascular Disorders / physiopathology ; Clinical Trials as Topic ; Drug Delivery Systems ; Drug Evaluation, Preclinical ; Fingolimod Hydrochloride / therapeutic use ; Humans ; Infarction, Middle Cerebral Artery / drug therapy ; Infarction, Middle Cerebral Artery / physiopathology ; Inflammation ; Ischemic Stroke / drug therapy ; Ischemic Stroke / physiopathology ; Mice ; Mice, Knockout ; Neurodegenerative Diseases / drug therapy ; Neurodegenerative Diseases / physiopathology ; Phosphotransferases (Alcohol Group Acceptor) / antagonists & inhibitors ; Phosphotransferases (Alcohol Group Acceptor) / deficiency ; Phosphotransferases (Alcohol Group Acceptor) / physiology ; Signal Transduction ; Sphingosine / physiology ; Sphingosine-1-Phosphate Receptors / drug effects
  • References: Akahoshi, N., Ishizaki, Y., Yasuda, H., Murashima, Y. L., Shinba, T., Goto, K., et al. (2011). Frequent spontaneous seizures followed by spatial working memory/anxiety deficits in mice lacking sphingosine 1-phosphate receptor 2. Epilepsy & Behavior, 22(4), 659–665. https://doi.org/10.1016/j.yebeh.2011.09.002. (PMID: 10.1016/j.yebeh.2011.09.002) ; Akoudad, S., Wolters, F. J., Viswanathan, A., de Bruijn, R. F., van der Lugt, A., Hofman, A., et al. (2016). Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurology, 73(8), 934–943. https://doi.org/10.1001/jamaneurol.2016.1017. (PMID: 10.1001/jamaneurol.2016.1017272717855966721) ; Alam, S., Piazzesi, A., Abd El Fatah, M., Raucamp, M., & van Echten-Deckert, G. (2020). Neurodegeneration caused by S1P-lyase deficiency involves calcium-dependent tau pathology and abnormal histone acetylation. Cells. https://doi.org/10.3390/cells9102189. (PMID: 10.3390/cells9102189332557417760820) ; Allende, M. L., Yamashita, T., & Proia, R. L. (2003). G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood, 102(10), 3665–3667. (Epub 2003 Jul 3617). (PMID: 10.1182/blood-2003-02-0460) ; Argraves, K. M., Sethi, A. A., Gazzolo, P. J., Wilkerson, B. A., Remaley, A. T., Tybjaerg-Hansen, A., et al. (2011). S1P, dihydro-S1P and C24:1-ceramide levels in the HDL-containing fraction of serum inversely correlate with occurrence of ischemic heart disease. Lipids Health Dis, 10, 70. https://doi.org/10.1186/1476-511X-10-70. (PMID: 10.1186/1476-511X-10-70215546993116499) ; Attems, J., & Jellinger, K. A. (2014). The overlap between vascular disease and Alzheimer’s disease—Lessons from pathology. BMC Medicine, 12(1), 206–206. https://doi.org/10.1186/s12916-014-0206-2. (PMID: 10.1186/s12916-014-0206-2253854474226890) ; Baird, T. A., Parsons, M. W., Barber, P. A., Butcher, K. S., Desmond, P. M., Tress, B. M., et al. (2002). The influence of diabetes mellitus and hyperglycaemia on stroke incidence and outcome. J Clin Neurosci, 9(6), 618–626. https://doi.org/10.1054/jocn.2002.1081. (PMID: 10.1054/jocn.2002.108112604269) ; Benson, R. T., & Sacco, R. L. (2000). Stroke prevention: Hypertension, diabetes, tobacco, and lipids. Neurologic Clinics, 18(2), 309–319. https://doi.org/10.1016/s0733-8619(05)70194-8. (PMID: 10.1016/s0733-8619(05)70194-810757828) ; Blondeau, N., Lai, Y., Tyndall, S., Popolo, M., Topalkara, K., Pru, J. K., et al. (2007). Distribution of sphingosine kinase activity and mRNA in rodent brain. Journal of Neurochemistry, 103(2), 509–517. https://doi.org/10.1111/j.1471-4159.2007.04755.x. (PMID: 10.1111/j.1471-4159.2007.04755.x176230442639651) ; Brunkhorst, R., Vutukuri, R., & Pfeilschifter, W. (2014). Fingolimod for the treatment of neurological diseases-state of play and future perspectives. Frontiers in Cellular Neuroscience, 8, 283. https://doi.org/10.3389/fncel.2014.00283. (PMID: 10.3389/fncel.2014.00283253093254162362) ; Campos, F., Qin, T., Castillo, J., Seo, J. H., Arai, K., Lo, E. H., et al. (2013). Fingolimod reduces hemorrhagic transformation associated with delayed tissue plasminogen activator treatment in a mouse thromboembolic model. Stroke, 44(2), 505–511. https://doi.org/10.1161/STROKEAHA.112.679043. (PMID: 10.1161/STROKEAHA.112.679043232877833586809) ; Ceccom, J., Loukh, N., Lauwers-Cances, V., Touriol, C., Nicaise, Y., Gentil, C., et al. (2014). Reduced sphingosine kinase-1 and enhanced sphingosine 1-phosphate lyase expression demonstrate deregulated sphingosine 1-phosphate signaling in Alzheimer’s disease. Acta Neuropathologica Communications, 2, 12. https://doi.org/10.1186/2051-5960-2-12. (PMID: 10.1186/2051-5960-2-12244681133912487) ; Chai, J. F., Raichur, S., Khor, I. W., Torta, F., Chew, W. S., Herr, D. R., et al. (2020). Associations with metabolites in Chinese suggest new metabolic roles in Alzheimer’s and Parkinson’s diseases. Human Molecular Genetics, 29(2), 189–201. https://doi.org/10.1093/hmg/ddz246. (PMID: 10.1093/hmg/ddz24631628463) ; Chan, J. P., Hu, Z., & Sieburth, D. (2012). Recruitment of sphingosine kinase to presynaptic terminals by a conserved muscarinic signaling pathway promotes neurotransmitter release. Genes & Development, 26(10), 1070–1085. https://doi.org/10.1101/gad.188003.112. (PMID: 10.1101/gad.188003.112) ; Chew, W. S., Wang, W., & Herr, D. R. (2016). To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacological Research, 113(Pt A), 521–532. https://doi.org/10.1016/j.phrs.2016.09.025. (PMID: 10.1016/j.phrs.2016.09.02527663260) ; Chiba, K. (2005). FTY720, a new class of immunomodulator, inhibits lymphocyte egress from secondary lymphoid tissues and thymus by agonistic activity at sphingosine 1-phosphate receptors. Pharmacology & Therapeutics, 108(3), 308–319. https://doi.org/10.1016/j.pharmthera.2005.05.002. (PMID: 10.1016/j.pharmthera.2005.05.002) ; Choi, J. W., Gardell, S. E., Herr, D. R., Rivera, R., Lee, C. W., Noguchi, K., et al. (2011). FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proceedings of the National Academy of Science USA, 108(2), 751–756. https://doi.org/10.1073/pnas.1014154108. (PMID: 10.1073/pnas.1014154108) ; Choi, Y. J., & Saba, J. D. (2019). Sphingosine phosphate lyase insufficiency syndrome (SPLIS): A novel inborn error of sphingolipid metabolism. Advances in Biological Regulation, 71, 128–140. https://doi.org/10.1016/j.jbior.2018.09.004. (PMID: 10.1016/j.jbior.2018.09.00430274713) ; Christoffersen, C., Obinata, H., Kumaraswamy, S. B., Galvani, S., Ahnstrom, J., Sevvana, M., et al. (2011). Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Science USA, 108(23), 9613–9618. https://doi.org/10.1073/pnas.1103187108. (PMID: 10.1073/pnas.1103187108) ; Chua, X. Y., Chai, Y. L., Chew, W. S., Chong, J. R., Ang, H. L., Xiang, P., et al. (2020). Immunomodulatory sphingosine-1-phosphates as plasma biomarkers of Alzheimer’s disease and vascular cognitive impairment. Alzheimers Research & Therapy, 12(1), 122. https://doi.org/10.1186/s13195-020-00694-3. (PMID: 10.1186/s13195-020-00694-3) ; Chun, J., Goetzl, E. J., Hla, T., Igarashi, Y., Lynch, K. R., Moolenaar, W., et al. (2002). International Union of Pharmacology XXXIV. Lysophospholipid receptor nomenclature. Pharmacological Reviews, 54(2), 265–269. (PMID: 10.1124/pr.54.2.265) ; Chun, J., Kihara, Y., Jonnalagadda, D., & Blaho, V. A. (2019). Fingolimod: Lessons learned and new opportunities for treating multiple sclerosis and other disorders. Annual Review of Pharmacology and Toxicology, 59, 149–170. https://doi.org/10.1146/annurev-pharmtox-010818-021358. (PMID: 10.1146/annurev-pharmtox-010818-021358306252826392001) ; Couttas, T. A., Kain, N., Daniels, B., Lim, X. Y., Shepherd, C., Kril, J., et al. (2014). Loss of the neuroprotective factor Sphingosine 1-phosphate early in Alzheimer’s disease pathogenesis. Acta Neuropathologica Communications, 2, 9. https://doi.org/10.1186/2051-5960-2-9. (PMID: 10.1186/2051-5960-2-9244566423906863) ; Czech, B., Pfeilschifter, W., Mazaheri-Omrani, N., Strobel, M. A., Kahles, T., Neumann-Haefelin, T., et al. (2009). The immunomodulatory sphingosine 1-phosphate analog FTY720 reduces lesion size and improves neurological outcome in a mouse model of cerebral ischemia. Biochemical and Biophysical Research Communications, 389(2), 251–256. https://doi.org/10.1016/j.bbrc.2009.08.142. (PMID: 10.1016/j.bbrc.2009.08.14219720050) ; Czubowicz, K., Jesko, H., Wencel, P., Lukiw, W. J., & Strosznajder, R. P. (2019). The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Molecular Neurobiology, 56(8), 5436–5455. https://doi.org/10.1007/s12035-018-1448-3. (PMID: 10.1007/s12035-018-1448-3306123336614129) ; de Wit, N. M., Snkhchyan, H., den Hoedt, S., Wattimena, D., de Vos, R., Mulder, M. T., et al. (2017). Altered sphingolipid balance in capillary cerebral amyloid angiopathy. Journal of Alzheimers Diseases, 60(3), 795–807. https://doi.org/10.3233/JAD-160551. (PMID: 10.3233/JAD-160551) ; Dominguez, G., Maddelein, M. L., Pucelle, M., Nicaise, Y., Maurage, C. A., Duyckaerts, C., et al. (2018). Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer’s disease brain. Acta Neuropathologica Communication, 6(1), 25. https://doi.org/10.1186/s40478-018-0527-z. (PMID: 10.1186/s40478-018-0527-z) ; Dusaban, S. S., Chun, J., Rosen, H., Purcell, N. H., & Brown, J. H. (2017). Sphingosine 1-phosphate receptor 3 and RhoA signaling mediate inflammatory gene expression in astrocytes. Journal of Neuroinflammation, 14(1), 111. https://doi.org/10.1186/s12974-017-0882-x. (PMID: 10.1186/s12974-017-0882-x285775765455202) ; Fu, Y., Hao, J., Zhang, N., Ren, L., Sun, N., Li, Y. J., et al. (2014). Fingolimod for the treatment of intracerebral hemorrhage: A 2-arm proof-of-concept study. JAMA Neurology, 71(9), 1092–1101. https://doi.org/10.1001/jamaneurol.2014.1065. (PMID: 10.1001/jamaneurol.2014.106525003359) ; Fu, Y., Zhang, N., Ren, L., Yan, Y., Sun, N., Li, Y. J., et al. (2014). Impact of an immune modulator fingolimod on acute ischemic stroke. Proceedings of the National Academy of Science U S A, 111(51), 18315–18320. https://doi.org/10.1073/pnas.1416166111. (PMID: 10.1073/pnas.1416166111) ; Gaengel, K., Niaudet, C., Hagikura, K., Lavina, B., Muhl, L., Hofmann, J. J., et al. (2012). The sphingosine-1-phosphate receptor S1PR1 restricts sprouting angiogenesis by regulating the interplay between VE-cadherin and VEGFR2. Developmental Cell, 23(3), 587–599. https://doi.org/10.1016/j.devcel.2012.08.005. (PMID: 10.1016/j.devcel.2012.08.00522975327) ; Gaire, B. P., & Choi, J. W. (2020). Sphingosine 1-phosphate receptors in cerebral ischemia. Neuromolecular Medicine. https://doi.org/10.1007/s12017-020-08614-2. (PMID: 10.1007/s12017-020-08614-232914259) ; Gaire, B. P., Song, M. R., & Choi, J. W. (2018). Sphingosine 1-phosphate receptor subtype 3 (S1P3) contributes to brain injury after transient focal cerebral ischemia via modulating microglial activation and their M1 polarization. Journal of Neuroinflammation, 15(1), 284. https://doi.org/10.1186/s12974-018-1323-1. (PMID: 10.1186/s12974-018-1323-1303051196180378) ; Galvani, S., Sanson, M., Blaho, V. A., Swendeman, S. L., Obinata, H., Conger, H., et al. (2015). HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P1 to limit vascular inflammation. Science Signaling, 8(389), 79. https://doi.org/10.1126/scisignal.aaa2581. (PMID: 10.1126/scisignal.aaa2581) ; Gasche, Y., Fujimura, M., Morita-Fujimura, Y., Copin, J. C., Kawase, M., Massengale, J., et al. (1999). Early appearance of activated matrix metalloproteinase-9 after focal cerebral ischemia in mice: A possible role in blood-brain barrier dysfunction. Journal of Cerebral Blood Flow and Metabolism, 19(9), 1020–1028. https://doi.org/10.1097/00004647-199909000-00010. (PMID: 10.1097/00004647-199909000-0001010478654) ; Gemmell, E., Bosomworth, H., Allan, L., Hall, R., Khundakar, A., Oakley, A. E., et al. (2012). Hippocampal neuronal atrophy and cognitive function in delayed poststroke and aging-related dementias. Stroke, 43(3), 808–814. https://doi.org/10.1161/STROKEAHA.111.636498. (PMID: 10.1161/STROKEAHA.111.63649822207507) ; Gonzalez-Diez, M., Rodriguez, C., Badimon, L., & Martinez-Gonzalez, J. (2008). Prostacyclin induction by high-density lipoprotein (HDL) in vascular smooth muscle cells depends on sphingosine 1-phosphate receptors: Effect of simvastatin. Thrombosis and Haemostasis, 100(1), 119–126. https://doi.org/10.1160/TH07-11-0675. (PMID: 10.1160/TH07-11-067518612546) ; Gorelick, P. B., Scuteri, A., Black, S. E., Decarli, C., Greenberg, S. M., Iadecola, C., et al. (2011). Vascular contributions to cognitive impairment and dementia: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 42(9), 2672–2713. https://doi.org/10.1161/STR.0b013e3182299496. (PMID: 10.1161/STR.0b013e3182299496217784383778669) ; Gray, C. S., Scott, J. F., French, J. M., Alberti, K. G., & O’Connell, J. E. (2004). Prevalence and prediction of unrecognised diabetes mellitus and impaired glucose tolerance following acute stroke. Age and Ageing, 33(1), 71–77. https://doi.org/10.1093/ageing/afh026. (PMID: 10.1093/ageing/afh02614695867) ; Hasegawa, Y., Hamada, J., Morioka, M., Yano, S., Kawano, T., Kai, Y., et al. (2003). Neuroprotective effect of postischemic administration of sodium orthovanadate in rats with transient middle cerebral artery occlusion. Journal of Cerebral Blood Flow and Metabolism, 23(9), 1040–1051. https://doi.org/10.1097/01.WCB.0000085160.71791.3F. (PMID: 10.1097/01.WCB.0000085160.71791.3F12973020) ; Hasegawa, Y., Suzuki, H., Altay, O., Rolland, W., & Zhang, J. H. (2013). Role of the sphingosine metabolism pathway on neurons against experimental cerebral ischemia in rats. Translational Stroke Research, 4(5), 524–532. https://doi.org/10.1007/s12975-013-0260-7. (PMID: 10.1007/s12975-013-0260-724187597) ; Hasegawa, Y., Suzuki, H., Sozen, T., Rolland, W., & Zhang, J. H. (2010). Activation of sphingosine 1-phosphate receptor-1 by FTY720 is neuroprotective after ischemic stroke in rats. Stroke, 41(2), 368–374. https://doi.org/10.1161/STROKEAHA.109.568899. (PMID: 10.1161/STROKEAHA.109.56889919940275) ; He, X., Huang, Y., Li, B., Gong, C. X., & Schuchman, E. H. (2010). Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiology of Aging, 31(3), 398–408. https://doi.org/10.1016/j.neurobiolaging.2008.05.010. (PMID: 10.1016/j.neurobiolaging.2008.05.01018547682) ; Hemdan, N. Y., Weigel, C., Reimann, C. M., & Graler, M. H. (2016). Modulating sphingosine 1-phosphate signaling with DOP or FTY720 alleviates vascular and immune defects in mouse sepsis. European Journal of Immunology, 46(12), 2767–2777. https://doi.org/10.1002/eji.201646417. (PMID: 10.1002/eji.20164641727683081) ; Herr, D. R., & Chun, J. (2007). Effects of LPA and S1P on the nervous system and implications for their involvement in disease. Current Drug Targets, 8(1), 155–167. (PMID: 10.2174/138945007779315669) ; Herr, D. R., Grillet, N., Schwander, M., Rivera, R., Muller, U., & Chun, J. (2007). Sphingosine 1-phosphate (S1P) signaling is required for maintenance of hair cells mainly via activation of S1P2. Journal of Neuroscience, 27(6), 1474–1478. https://doi.org/10.1523/jneurosci.4245-06.2007. (PMID: 10.1523/jneurosci.4245-06.200717287522) ; Herr, D. R., Lee, C. W., Wang, W., Ware, A., Rivera, R., & Chun, J. (2013). Sphingosine 1-phosphate receptors are essential mediators of eyelid closure during embryonic development. Journal of Biological Chemistry, 288(41), 29882–29889. https://doi.org/10.1074/jbc.M113.510099. (PMID: 10.1074/jbc.M113.510099) ; Herr, D. R., Reolo, M. J., Peh, Y. X., Wang, W., Lee, C. W., Rivera, R., et al. (2016). Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: Implications for otoprotective therapy. Science Report, 6, 24541. https://doi.org/10.1038/srep24541. (PMID: 10.1038/srep24541) ; Hla, T., & Maciag, T. (1990). An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. Journal of Biological Chemistry, 265(16), 9308–9313. (PMID: 10.1016/S0021-9258(19)38849-0) ; Hla, T., Venkataraman, K., & Michaud, J. (2008). The vascular S1P gradient-cellular sources and biological significance. Biochimica et Biophysica Acta, 1781(9), 477–482. https://doi.org/10.1016/j.bbalip.2008.07.003. (PMID: 10.1016/j.bbalip.2008.07.003186746372636563) ; Iadecola, C. (2013). The pathobiology of vascular dementia. Neuron, 80(4), 844–866. https://doi.org/10.1016/j.neuron.2013.10.008. (PMID: 10.1016/j.neuron.2013.10.00824267647) ; Iadecola, C., Duering, M., Hachinski, V., Joutel, A., Pendlebury, S. T., Schneider, J. A., et al. (2019). Vascular cognitive impairment and dementia: JACC scientific expert panel. Journal of the American College of Cardiology, 73(25), 3326–3344. https://doi.org/10.1016/j.jacc.2019.04.034. (PMID: 10.1016/j.jacc.2019.04.034312485556719789) ; Ichijo, M., Ishibashi, S., Li, F., Yui, D., Miki, K., Mizusawa, H., et al. (2015). Sphingosine-1-phosphate receptor-1 selective agonist enhances collateral growth and protects against subsequent stroke. PLoS ONE, 10(9), e0138029. https://doi.org/10.1371/journal.pone.0138029. (PMID: 10.1371/journal.pone.0138029263672584569572) ; Igarashi, N., Okada, T., Hayashi, S., Fujita, T., Jahangeer, S., & Nakamura, S. (2003). Sphingosine kinase 2 is a nuclear protein and inhibits DNA synthesis. Journal of Biological Chemistry, 278(47), 46832–46839. https://doi.org/10.1074/jbc.M306577200. (PMID: 10.1074/jbc.M306577200) ; Ingham, N. J., Carlisle, F., Pearson, S., Lewis, M. A., Buniello, A., Chen, J., et al. (2016). S1PR2 variants associated with auditory function in humans and endocochlear potential decline in mouse. Science Report, 6, 28964. https://doi.org/10.1038/srep28964. (PMID: 10.1038/srep28964) ; Ishii, I., Ye, X., Friedman, B., Kawamura, S., Contos, J. J., Kingsbury, M. A., et al. (2002). Marked perinatal lethality and cellular signaling deficits in mice null for the two sphingosine 1-phosphate (S1P) receptors, S1P(2)/LP(B2)/EDG-5 and S1P(3)/LP(B3)/EDG-3. Journal of Biological Chemistry, 277(28), 25152–25159. https://doi.org/10.1074/jbc.M200137200. (PMID: 10.1074/jbc.M200137200) ; Jackson, S. J., Giovannoni, G., & Baker, D. (2011). Fingolimod modulates microglial activation to augment markers of remyelination. Journal of Neuroinflammation, 8, 76. https://doi.org/10.1186/1742-2094-8-76. (PMID: 10.1186/1742-2094-8-76217292813152910) ; Jaillard, C., Harrison, S., Stankoff, B., Aigrot, M. S., Calver, A. R., Duddy, G., et al. (2005). Edg8/S1P5: An oligodendroglial receptor with dual function on process retraction and cell survival. Journal of Neuroscience, 25(6), 1459–1469. https://doi.org/10.1523/JNEUROSCI.4645-04.2005. (PMID: 10.1523/JNEUROSCI.4645-04.200515703400) ; Jokinen, H., Gouw, A. A., Madureira, S., Ylikoski, R., van Straaten, E. C., van der Flier, W. M., et al. (2011). Incident lacunes influence cognitive decline: The LADIS study. Neurology, 76(22), 1872–1878. https://doi.org/10.1212/WNL.0b013e31821d752f. (PMID: 10.1212/WNL.0b013e31821d752f21543730) ; Kaarisalo, M. M., Raiha, I., Sivenius, J., Immonen-Raiha, P., Lehtonen, A., Sarti, C., et al. (2005). Diabetes worsens the outcome of acute ischemic stroke. Diabetes Research and Clinical Practice, 69(3), 293–298. https://doi.org/10.1016/j.diabres.2005.02.001. (PMID: 10.1016/j.diabres.2005.02.00116098927) ; Kajimoto, T., Okada, T., Yu, H., Goparaju, S. K., Jahangeer, S., & Nakamura, S. (2007). Involvement of sphingosine-1-phosphate in glutamate secretion in hippocampal neurons. Molecular and Cellular Biology, 27(9), 3429–3440. https://doi.org/10.1128/MCB.01465-06. (PMID: 10.1128/MCB.01465-06173250391899953) ; Kalaria, R. N. (2016). Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta Neuropathologica, 131(5), 659–685. https://doi.org/10.1007/s00401-016-1571-z. (PMID: 10.1007/s00401-016-1571-z270622614835512) ; Katsel, P., Li, C., & Haroutunian, V. (2007). Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: A shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease? Neurochemical Research, 32(4–5), 845–856. https://doi.org/10.1007/s11064-007-9297-x. (PMID: 10.1007/s11064-007-9297-x17342407) ; Kawabori, M., Kacimi, R., Karliner, J. S., & Yenari, M. A. (2013). Sphingolipids in cardiovascular and cerebrovascular systems: Pathological implications and potential therapeutic targets. World Journal of Cardiology, 5(4), 75–86. https://doi.org/10.4330/wjc.v5.i4.75. (PMID: 10.4330/wjc.v5.i4.75236755533653015) ; Kerage, D., Brindley, D. N., & Hemmings, D. G. (2014). Review: Novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta, 35(Suppl), S86-92. https://doi.org/10.1016/j.placenta.2013.12.006. (PMID: 10.1016/j.placenta.2013.12.00624411702) ; Keul, P., Polzin, A., Kaiser, K., Graler, M., Dannenberg, L., Daum, G., et al. (2019). Potent anti-inflammatory properties of HDL in vascular smooth muscle cells mediated by HDL-S1P and their impairment in coronary artery disease due to lower HDL-S1P: A new aspect of HDL dysfunction and its therapy. The FASEB Journal, 33(1), 1482–1495. https://doi.org/10.1096/fj.201801245R. (PMID: 10.1096/fj.201801245R30130432) ; Kihara, A., & Igarashi, Y. (2008). Production and release of sphingosine 1-phosphate and the phosphorylated form of the immunomodulator FTY720. Biochimica et Biophysica Acta, 1781(9), 496–502. https://doi.org/10.1016/j.bbalip.2008.05.003. (PMID: 10.1016/j.bbalip.2008.05.00318555808) ; Kihara, Y., Maceyka, M., Spiegel, S., & Chun, J. (2014). Lysophospholipid receptor nomenclature review: IUPHAR Review 8. British Journal of Pharmacology, 171(15), 3575–3594. https://doi.org/10.1111/bph.12678. (PMID: 10.1111/bph.12678246020164128058) ; Kim, G. S., Yang, L., Zhang, G., Zhao, H., Selim, M., McCullough, L. D., et al. (2015). Critical role of sphingosine-1-phosphate receptor-2 in the disruption of cerebrovascular integrity in experimental stroke. Nature Communications, 6, 7893. https://doi.org/10.1038/ncomms8893. (PMID: 10.1038/ncomms8893262433354587559) ; Kimura, A., Ohmori, T., Kashiwakura, Y., Ohkawa, R., Madoiwa, S., Mimuro, J., et al. (2008). Antagonism of sphingosine 1-phosphate receptor-2 enhances migration of neural progenitor cells toward an area of brain. Stroke, 39(12), 3411–3417. https://doi.org/10.1161/STROKEAHA.108.514612. (PMID: 10.1161/STROKEAHA.108.51461218757288) ; Kraft, P., Gob, E., Schuhmann, M. K., Gobel, K., Deppermann, C., Thielmann, I., et al. (2013). FTY720 ameliorates acute ischemic stroke in mice by reducing thrombo-inflammation but not by direct neuroprotection. Stroke, 44(11), 3202–3210. https://doi.org/10.1161/STROKEAHA.113.002880. (PMID: 10.1161/STROKEAHA.113.00288024029635) ; Kumar, A., Zamora-Pineda, J., Degagne, E., & Saba, J. D. (2017). S1P Lyase regulation of thymic egress and oncogenic inflammatory signaling. Mediators of Inflammation, 2017, 7685142. https://doi.org/10.1155/2017/7685142. (PMID: 10.1155/2017/7685142293330025733215) ; Lai, M. K., Chew, W. S., Torta, F., Rao, A., Harris, G. L., Chun, J., et al. (2016). biological effects of naturally occurring sphingolipids, uncommon variants, and their analogs. Neuromolecular Medicine, 18(3), 396–414. https://doi.org/10.1007/s12017-016-8424-8. (PMID: 10.1007/s12017-016-8424-827393119) ; Le Stunff, H., Peterson, C., Thornton, R., Milstien, S., Mandala, S. M., & Spiegel, S. (2002). Characterization of murine sphingosine-1-phosphate phosphohydrolase. Journal of Biological Chemistry, 277(11), 8920–8927. https://doi.org/10.1074/jbc.M109968200. (PMID: 10.1074/jbc.M109968200) ; Lei, M., Teo, J. D., Song, H., McEwen, H. P., Yup Lee, J., Couttas, T. A., et al. (2019). Sphingosine kinase 2 potentiates amyloid deposition but protects against hippocampal volume loss and demyelination in a mouse model of Alzheimer’s disease. Journal of Neuroscience, 39(48), 9645–9659. https://doi.org/10.1523/JNEUROSCI.0524-19.2019. (PMID: 10.1523/JNEUROSCI.0524-19.201931641049) ; Levkau, B. (2015). HDL-S1P: Cardiovascular functions, disease-associated alterations, and therapeutic applications. Frontiers in Pharmacology, 6, 243. https://doi.org/10.3389/fphar.2015.00243. (PMID: 10.3389/fphar.2015.00243265391214611146) ; Li, W., He, T., Jiang, L., Shi, R., Song, Y., Mamtilahun, M., et al. (2020). Fingolimod inhibits inflammation but exacerbates brain edema in the acute phases of cerebral ischemia in diabetic mice. Frontiers in Neuroscience, 14, 842. https://doi.org/10.3389/fnins.2020.00842. (PMID: 10.3389/fnins.2020.00842328485877432267) ; Li, W., Xu, H., & Testai, F. D. (2016). Mechanism of action and clinical potential of fingolimod for the treatment of stroke. Frontiers in Neurology, 7, 139. https://doi.org/10.3389/fneur.2016.00139. (PMID: 10.3389/fneur.2016.00139276170024999895) ; Li, Y., Li, H., & Han, J. (2020). Sphingosine-1-phosphate receptor 2 modulates pain sensitivity by suppressing the ROS-RUNX3 pathway in a rat model of neuropathy. Journal of Cellular Physiology, 235(4), 3864–3873. https://doi.org/10.1002/jcp.29280. (PMID: 10.1002/jcp.2928031603252) ; Liesz, A., Sun, L., Zhou, W., Schwarting, S., Mracsko, E., Zorn, M., et al. (2011). FTY720 reduces post-ischemic brain lymphocyte influx but does not improve outcome in permanent murine cerebral ischemia. PLoS ONE, 6(6), e21312. https://doi.org/10.1371/journal.pone.0021312. (PMID: 10.1371/journal.pone.0021312217015993119049) ; Lin, J. J., Chang, T., Cai, W. K., Zhang, Z., Yang, Y. X., Sun, C., et al. (2015). Post-injury administration of allicin attenuates ischemic brain injury through sphingosine kinase 2: In vivo and in vitro studies. Neurochemistry International, 89, 92–100. https://doi.org/10.1016/j.neuint.2015.07.022. (PMID: 10.1016/j.neuint.2015.07.02226275594) ; Lindvall, O., Kokaia, Z., & Martinez-Serrano, A. (2004). Stem cell therapy for human neurodegenerative disorders-how to make it work. Nature Medicine, 10(Suppl), S42-50. https://doi.org/10.1038/nm1064. (PMID: 10.1038/nm106415272269) ; Liu, J., Zhang, C., Tao, W., & Liu, M. (2013). Systematic review and meta-analysis of the efficacy of sphingosine-1-phosphate (S1P) receptor agonist FTY720 (fingolimod) in animal models of stroke. International Journal of Neuroscience, 123(3), 163–169. https://doi.org/10.3109/00207454.2012.749255. (PMID: 10.3109/00207454.2012.749255) ; Liu, Y., Wada, R., Yamashita, T., Mi, Y., Deng, C. X., Hobson, J. P., et al. (2000). Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. Journal of Clinical Investigation, 106(8), 951–961. (PMID: 10.1172/JCI10905) ; Lu, L., Barfejani, A. H., Qin, T., Dong, Q., Ayata, C., & Waeber, C. (2014). Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage. Brain Research, 1555, 89–96. https://doi.org/10.1016/j.brainres.2014.01.048. (PMID: 10.1016/j.brainres.2014.01.048245029843994537) ; Lv, M., Zhang, D., Dai, D., Zhang, W., & Zhang, L. (2016). Sphingosine kinase 1/sphingosine-1-phosphate regulates the expression of interleukin-17A in activated microglia in cerebral ischemia/reperfusion. Inflammation Research, 65(7), 551–562. https://doi.org/10.1007/s00011-016-0939-9. (PMID: 10.1007/s00011-016-0939-927002656) ; Machida, T., Matamura, R., Iizuka, K., & Hirafuji, M. (2016). Cellular function and signaling pathways of vascular smooth muscle cells modulated by sphingosine 1-phosphate. Journal of Pharmacological Science. https://doi.org/10.1016/j.jphs.2016.05.010. (PMID: 10.1016/j.jphs.2016.05.010) ; MacLennan, A. J., Carney, P. R., Zhu, W. J., Chaves, A. H., Garcia, J., Grimes, J. R., et al. (2001). An essential role for the H218/AGR16/Edg-5/LP(B2) sphingosine 1-phosphate receptor in neuronal excitability. European Journal of Neuroscience, 14(2), 203–209. (PMID: 10.1046/j.0953-816x.2001.01634.x) ; Martinez-Ramirez, S., Greenberg, S. M., & Viswanathan, A. (2014). Cerebral microbleeds: Overview and implications in cognitive impairment. Alzheimers Research & Therapy, 6(3), 33. https://doi.org/10.1186/alzrt263. (PMID: 10.1186/alzrt263) ; Matloubian, M., Lo, C. G., Cinamon, G., Lesneski, M. J., Xu, Y., Brinkmann, V., et al. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature, 427(6972), 355–360. https://doi.org/10.1038/nature02284. (PMID: 10.1038/nature0228414737169) ; Michel, M. C., Mulders, A. C., Jongsma, M., Alewijnse, A. E., & Peters, S. L. (2007). Vascular effects of sphingolipids. Acta Paediatrica, 96(455), 44–48. https://doi.org/10.1111/j.1651-2227.2007.00207.x. (PMID: 10.1111/j.1651-2227.2007.00207.x17391441) ; Mielke, M. M., Syrjanen, J. A., Bui, H. H., Petersen, R. C., Knopman, D. S., Jack, C. R., Jr., et al. (2019). Elevated plasma ceramides are associated with higher white matter hyperintensity volume-brief report. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(11), 2431–2436. https://doi.org/10.1161/ATVBAHA.119.313099. (PMID: 10.1161/ATVBAHA.119.313099315107906812619) ; Mitroi, D. N., Karunakaran, I., Graler, M., Saba, J. D., Ehninger, D., Ledesma, M. D., et al. (2017). SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production. Autophagy, 13(5), 885–899. https://doi.org/10.1080/15548627.2017.1291471. (PMID: 10.1080/15548627.2017.1291471285216115446076) ; Molina, C. A., & Alvarez-Sabin, J. (2009). Recanalization and reperfusion therapies for acute ischemic stroke. Cerebrovasc Dis, 27(Suppl 1), 162–167. https://doi.org/10.1159/000200455. (PMID: 10.1159/00020045519342847) ; Moon, E., Han, J. E., Jeon, S., Ryu, J. H., Choi, J. W., & Chun, J. (2015). Exogenous S1P exposure potentiates ischemic stroke damage that is reduced possibly by inhibiting S1P receptor signaling. Mediators of Inflammation, 2015, 492659. https://doi.org/10.1155/2015/492659. (PMID: 10.1155/2015/492659265760744630407) ; Murakami, A., Takasugi, H., Ohnuma, S., Koide, Y., Sakurai, A., Takeda, S., et al. (2010). Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: Investigation based on a new S1P3 receptor antagonist. Molecular Pharmacology, 77(4), 704–713. https://doi.org/10.1124/mol.109.061481. (PMID: 10.1124/mol.109.06148120097776) ; Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., et al. (2000). Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. The Biochemical Journal, 352(Pt 3), 809–815. (PMID: 10.1042/bj3520809) ; Narayanaswamy, P., Shinde, S., Sulc, R., Kraut, R., Staples, G., Thiam, C. H., et al. (2014a). Lipidomic “deep profiling”: An enhanced workflow to reveal new molecular species of signaling lipids. Analytical Chemistry, 86(6), 3043–3047. https://doi.org/10.1021/ac4039652. (PMID: 10.1021/ac403965224533588) ; Narayanaswamy, P., Shinde, S., Sulc, R., Kraut, R., Staples, G., Thiam, C. H., et al. (2014b). Lipidomic “deep profiling”: An enhanced workflow to reveal new molecular species of signaling lipids. Analytical Chemistry, 86(6), 3043–3047. https://doi.org/10.1021/ac4039652. (PMID: 10.1021/ac403965224533588) ; Nayak, D., Huo, Y., Kwang, W. X., Pushparaj, P. N., Kumar, S. D., Ling, E. A., et al. (2010). Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. Neuroscience, 166(1), 132–144. https://doi.org/10.1016/j.neuroscience.2009.12.020. (PMID: 10.1016/j.neuroscience.2009.12.02020036321) ; Neubauer, H. A., & Pitson, S. M. (2013). Roles, regulation and inhibitors of sphingosine kinase 2. FEBS Journal, 280(21), 5317–5336. https://doi.org/10.1111/febs.12314. (PMID: 10.1111/febs.12314) ; Noda, H., Takeuchi, H., Mizuno, T., & Suzumura, A. (2013). Fingolimod phosphate promotes the neuroprotective effects of microglia. Journal of Neuroimmunology, 256(1–2), 13–18. https://doi.org/10.1016/j.jneuroim.2012.12.005. (PMID: 10.1016/j.jneuroim.2012.12.00523290828) ; Ogawa, C., Kihara, A., Gokoh, M., & Igarashi, Y. (2003). Identification and characterization of a novel human sphingosine-1-phosphate phosphohydrolase, hSPP2. Journal of Biological Chemistry, 278(2), 1268–1272. https://doi.org/10.1074/jbc.M209514200. (PMID: 10.1074/jbc.M209514200) ; Ohmori, T., Yatomi, Y., Osada, M., Kazama, F., Takafuta, T., Ikeda, H., et al. (2003). Sphingosine 1-phosphate induces contraction of coronary artery smooth muscle cells via S1P2. Cardiovascular Research, 58(1), 170–177. (PMID: 10.1016/S0008-6363(03)00260-8) ; Okano, H., Sakaguchi, M., Ohki, K., Suzuki, N., & Sawamoto, K. (2007). Regeneration of the central nervous system using endogenous repair mechanisms. Journal of Neurochemistry, 102(5), 1459–1465. https://doi.org/10.1111/j.1471-4159.2007.04674.x. (PMID: 10.1111/j.1471-4159.2007.04674.x17697047) ; Olivera, A., & Spiegel, S. (1993). Sphingosine-1-phosphate as second messenger in cell proliferation induced by PDGF and FCS mitogens. Nature, 365(6446), 557–560. (PMID: 10.1038/365557a0) ; Oo, M. L., Thangada, S., Wu, M. T., Liu, C. H., Macdonald, T. L., Lynch, K. R., et al. (2007). Immunosuppressive and anti-angiogenic sphingosine 1-phosphate receptor-1 agonists induce ubiquitinylation and proteasomal degradation of the receptor. Journal of Biological Chemistry, 282(12), 9082–9089. https://doi.org/10.1074/jbc.M610318200. (PMID: 10.1074/jbc.M610318200) ; Ota, H., Beutz, M. A., Ito, M., Abe, K., Oka, M., & McMurtry, I. F. (2011). S1P(4) receptor mediates S1P-induced vasoconstriction in normotensive and hypertensive rat lungs. Pulm Circ, 1(3), 399–404. https://doi.org/10.4103/2045-8932.87309. (PMID: 10.4103/2045-8932.87309221406303224432) ; Paik, J. H., Chae, S., Lee, M. J., Thangada, S., & Hla, T. (2001). Sphingosine 1-phosphate-induced endothelial cell migration requires the expression of EDG-1 and EDG-3 receptors and Rho-dependent activation of alpha vbeta3- and beta1-containing integrins. Journal of Biological Chemistry, 276(15), 11830–11837. https://doi.org/10.1074/jbc.M009422200. (PMID: 10.1074/jbc.M009422200) ; Pappu, R., Schwab, S. R., Cornelissen, I., Pereira, J. P., Regard, J. B., Xu, Y., et al. (2007). Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science, 316(5822), 295–298. https://doi.org/10.1126/science.1139221. (PMID: 10.1126/science.11392211736362917363629) ; Pfeilschifter, W., Czech-Zechmeister, B., Sujak, M., Foerch, C., Wichelhaus, T. A., & Pfeilschifter, J. (2011). Treatment with the immunomodulator FTY720 does not promote spontaneous bacterial infections after experimental stroke in mice. Experimental & Translational Stroke Medicine, 3, 2. https://doi.org/10.1186/2040-7378-3-2. (PMID: 10.1186/2040-7378-3-2) ; Pfeilschifter, W., Czech-Zechmeister, B., Sujak, M., Mirceska, A., Koch, A., Rami, A., et al. (2011). Activation of sphingosine kinase 2 is an endogenous protective mechanism in cerebral ischemia. Biochemical and Biophysical Research Communications, 413(2), 212–217. https://doi.org/10.1016/j.bbrc.2011.08.070. (PMID: 10.1016/j.bbrc.2011.08.07021872577) ; Pirhaji, L., Milani, P., Dalin, S., Wassie, B. T., Dunn, D. E., Fenster, R. J., et al. (2017). Identifying therapeutic targets by combining transcriptional data with ordinal clinical measurements. Nature Communications, 8(1), 623. https://doi.org/10.1038/s41467-017-00353-6. (PMID: 10.1038/s41467-017-00353-6289318055606996) ; Pitson, S. M. (2011). Regulation of sphingosine kinase and sphingolipid signaling. Trends in Biochemical Sciences, 36(2), 97–107. https://doi.org/10.1016/j.tibs.2010.08.001. (PMID: 10.1016/j.tibs.2010.08.00120870412) ; Prager, B., Spampinato, S. F., & Ransohoff, R. M. (2015). Sphingosine 1-phosphate signaling at the blood-brain barrier. Trends in Molecular Medicine, 21(6), 354–363. https://doi.org/10.1016/j.molmed.2015.03.006. (PMID: 10.1016/j.molmed.2015.03.00625939882) ; Pyne, S., Adams, D. R., & Pyne, N. J. (2016). Sphingosine 1-phosphate and sphingosine kinases in health and disease: Recent advances. Progress in Lipid Research, 62, 93–106. https://doi.org/10.1016/j.plipres.2016.03.001. (PMID: 10.1016/j.plipres.2016.03.00126970273) ; Pyne, S., Lee, S. C., Long, J., & Pyne, N. J. (2009). Role of sphingosine kinases and lipid phosphate phosphatases in regulating spatial sphingosine 1-phosphate signalling in health and disease. Cellular Signalling, 21(1), 14–21. https://doi.org/10.1016/j.cellsig.2008.08.008. (PMID: 10.1016/j.cellsig.2008.08.00818768158) ; Qin, C., Fan, W. H., Liu, Q., Shang, K., Murugan, M., Wu, L. J., et al. (2017). Fingolimod protects against ischemic white matter damage by modulating microglia toward M2 polarization via STAT3 pathway. Stroke, 48(12), 3336–3346. https://doi.org/10.1161/STROKEAHA.117.018505. (PMID: 10.1161/STROKEAHA.117.018505291140965728178) ; Riganti, L., Antonucci, F., Gabrielli, M., Prada, I., Giussani, P., Viani, P., et al. (2016). Sphingosine-1-phosphate (S1P) impacts presynaptic functions by regulating synapsin I localization in the presynaptic compartment. Journal of Neuroscience, 36(16), 4624–4634. https://doi.org/10.1523/JNEUROSCI.3588-15.2016. (PMID: 10.1523/JNEUROSCI.3588-15.201627098703) ; Roger, V. L. (2017). The heart-brain connection: From evidence to action. European Heart Journal, 38(43), 3229–3231. https://doi.org/10.1093/eurheartj/ehx387. (PMID: 10.1093/eurheartj/ehx38729020365) ; Rolland, W. B., Lekic, T., Krafft, P. R., Hasegawa, Y., Altay, O., Hartman, R., et al. (2013). Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Experimental Neurology, 241, 45–55. https://doi.org/10.1016/j.expneurol.2012.12.009. (PMID: 10.1016/j.expneurol.2012.12.00923261767) ; Rolland, W. B., Manaenko, A., Lekic, T., Hasegawa, Y., Ostrowski, R., Tang, J., et al. (2011). FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochirurgica. Supplementum, 111, 213–217. https://doi.org/10.1007/978-3-7091-0693-8_36. (PMID: 10.1007/978-3-7091-0693-8_36) ; Romanic, A. M., White, R. F., Arleth, A. J., Ohlstein, E. H., & Barone, F. C. (1998). Matrix metalloproteinase expression increases after cerebral focal ischemia in rats: Inhibition of matrix metalloproteinase-9 reduces infarct size. Stroke, 29(5), 1020–1030. (PMID: 10.1161/01.STR.29.5.1020) ; Saba, J. D. (2019). Fifty years of lyase and a moment of truth: Sphingosine phosphate lyase from discovery to disease. Journal of Lipid Research, 60(3), 456–463. https://doi.org/10.1194/jlr.S091181. (PMID: 10.1194/jlr.S091181306353646399507) ; Safarian, F., Khallaghi, B., Ahmadiani, A., & Dargahi, L. (2015). Activation of S1P(1) receptor regulates PI3K/Akt/FoxO3a pathway in response to oxidative stress in PC12 cells. Journal of Molecular Neuroscience, 56(1), 177–187. https://doi.org/10.1007/s12031-014-0478-1. (PMID: 10.1007/s12031-014-0478-125534920) ; Salomone, S., Potts, E. M., Tyndall, S., Ip, P. C., Chun, J., Brinkmann, V., et al. (2008). Analysis of sphingosine 1-phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. British Journal of Pharmacology, 153(1), 140–147. https://doi.org/10.1038/sj.bjp.0707581. (PMID: 10.1038/sj.bjp.070758118026125) ; Salomone, S., & Waeber, C. (2011). Selectivity and specificity of sphingosine-1-phosphate receptor ligands: Caveats and critical thinking in characterizing receptor-mediated effects. Front Pharmacol, 2, 9. https://doi.org/10.3389/fphar.2011.00009. (PMID: 10.3389/fphar.2011.00009216875043110020) ; Salomone, S., Yoshimura, S., Reuter, U., Foley, M., Thomas, S. S., Moskowitz, M. A., et al. (2003). S1P3 receptors mediate the potent constriction of cerebral arteries by sphingosine-1-phosphate. European Journal of Pharmacology, 469(1–3), 125–134. (PMID: 10.1016/S0014-2999(03)01731-X) ; Sanchez, T., Skoura, A., Wu, M. T., Casserly, B., Harrington, E. O., & Hla, T. (2007). Induction of vascular permeability by the sphingosine-1-phosphate receptor-2 (S1P2R) and its downstream effectors ROCK and PTEN. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(6), 1312–1318. https://doi.org/10.1161/ATVBAHA.107.143735. (PMID: 10.1161/ATVBAHA.107.14373517431187) ; Saver, J. L. (2011). Improving reperfusion therapy for acute ischaemic stroke. Journal of Thrombosis and Haemostasis, 9(Suppl 1), 333–343. https://doi.org/10.1111/j.1538-7836.2011.04371.x. (PMID: 10.1111/j.1538-7836.2011.04371.x21781270) ; Schlunk, F., Pfeilschifter, W., Yigitkanli, K., Lo, E. H., & Foerch, C. (2016). Treatment with FTY720 has no beneficial effects on short-term outcome in an experimental model of intracerebral hemorrhage. Exp Transl Stroke Med, 8, 1. https://doi.org/10.1186/s13231-016-0016-z. (PMID: 10.1186/s13231-016-0016-z268938214758011) ; Schmahl, J., Raymond, C. S., & Soriano, P. (2007). PDGF signaling specificity is mediated through multiple immediate early genes. Nature Genetics, 39(1), 52–60. https://doi.org/10.1038/ng1922. (PMID: 10.1038/ng192217143286) ; Sefcik, L. S., Aronin, C. E., Awojoodu, A. O., Shin, S. J., Mac Gabhann, F., MacDonald, T. L., et al. (2011). Selective activation of sphingosine 1-phosphate receptors 1 and 3 promotes local microvascular network growth. Tissue Engineering Part A, 17(5–6), 617–629. https://doi.org/10.1089/ten.TEA.2010.0404. (PMID: 10.1089/ten.TEA.2010.040420874260) ; Shichita, T., Sugiyama, Y., Ooboshi, H., Sugimori, H., Nakagawa, R., Takada, I., et al. (2009). Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nature Medicine, 15(8), 946–950. https://doi.org/10.1038/nm.1999. (PMID: 10.1038/nm.199919648929) ; Soltau, I., Mudersbach, E., Geissen, M., Schwedhelm, E., Winkler, M. S., Geffken, M., et al. (2016). Serum-sphingosine-1-phosphate concentrations are inversely associated with atherosclerotic diseases in humans. PLoS ONE, 11(12), e0168302. https://doi.org/10.1371/journal.pone.0168302. (PMID: 10.1371/journal.pone.0168302279736075156421) ; Stradner, M. H., Gruber, G., Angerer, H., Huber, V., Setznagl, D., Kremser, M. L., et al. (2013). Sphingosine 1-phosphate counteracts the effects of interleukin-1beta in human chondrocytes. Arthritis and Rheumatism, 65(8), 2113–2122. https://doi.org/10.1002/art.37989. (PMID: 10.1002/art.37989236668033763206) ; Sun, N., Shen, Y., Han, W., Shi, K., Wood, K., Fu, Y., et al. (2016). Selective sphingosine-1-phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage. Stroke, 47(7), 1899–1906. https://doi.org/10.1161/STROKEAHA.115.012236. (PMID: 10.1161/STROKEAHA.115.01223627174529) ; Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011). BACE1 activity is modulated by cell-associated sphingosine-1-phosphate. Journal of Neuroscience, 31(18), 6850–6857. https://doi.org/10.1523/JNEUROSCI.6467-10.2011. (PMID: 10.1523/JNEUROSCI.6467-10.201121543615) ; Tanaka, R., Muraki, K., Ohya, S., Itoh, Y., Hatano, N., & Imaizumi, Y. (2008). Cell-culture-dependent change of Ca2+ response of rat aortic myocytes to sphingosine-1-phosphate. Journal of Pharmacological Science, 107(4), 434–442. https://doi.org/10.1254/jphs.08029fp. (PMID: 10.1254/jphs.08029fp) ; Testai, F. D., Hillmann, M., Amin-Hanjani, S., Gorshkova, I., Berdyshev, E., Gorelick, P. B., et al. (2012). Changes in the cerebrospinal fluid ceramide profile after subarachnoid hemorrhage. Stroke, 43(8), 2066–2070. https://doi.org/10.1161/STROKEAHA.112.650390. (PMID: 10.1161/STROKEAHA.112.65039022713492) ; Testai, F. D., Xu, H. L., Kilkus, J., Suryadevara, V., Gorshkova, I., Berdyshev, E., et al. (2015). Changes in the metabolism of sphingolipids after subarachnoid hemorrhage. Journal of Neuroscience Research, 93(5), 796–805. https://doi.org/10.1002/jnr.23542. (PMID: 10.1002/jnr.23542255977634359096) ; Thangada, S., Khanna, K. M., Blaho, V. A., Oo, M. L., Im, D. S., Guo, C., et al. (2010). Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. Journal of Experimental Medicine, 207(7), 1475–1483. https://doi.org/10.1084/jem.20091343. (PMID: 10.1084/jem.20091343) ; Toledo, J. B., Caims, N. J., Da, X., Chen, K., Carter, D., Fleisher, A., et al. (2013). Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathologica Communications, 1, 65. (PMID: 10.1186/2051-5960-1-65) ; Torretta, E., Arosio, B., Barbacini, P., Casati, M., Capitanio, D., Mancuso, R., et al. (2018). Particular CSF sphingolipid patterns identify iNPH and AD patients. Science Report, 8(1), 13639. https://doi.org/10.1038/s41598-018-31756-0. (PMID: 10.1038/s41598-018-31756-0) ; Tosaka, M., Okajima, F., Hashiba, Y., Saito, N., Nagano, T., Watanabe, T., et al. (2001). Sphingosine 1-phosphate contracts canine basilar arteries in vitro and in vivo: Possible role in pathogenesis of cerebral vasospasm. Stroke, 32(12), 2913–2919. (PMID: 10.1161/hs1201.099525) ; Tran, C., Heng, B., Teo, J. D., Humphrey, S. J., Qi, Y., Couttas, T. A., et al. (2020). Sphingosine 1-phosphate but not Fingolimod protects neurons against excitotoxic cell death by inducing neurotrophic gene expression in astrocytes. Journal of Neurochemistry, 153(2), 173–188. https://doi.org/10.1111/jnc.14917. (PMID: 10.1111/jnc.1491731742704) ; Troupiotis-Tsaïlaki, A., Zachmann, J., González-Gil, I., Gonzalez, A., Ortega-Gutiérrez, S., López-Rodríguez, M. L., et al. (2017). Ligand chain length drives activation of lipid G protein-coupled receptors. Science Report, 7(1), 2020. https://doi.org/10.1038/s41598-017-02104-5. (PMID: 10.1038/s41598-017-02104-5) ; van der Flier, W. M., Skoog, I., Schneider, J. A., Pantoni, L., Mok, V., Chen, C. L. H., et al. (2018). Vascular cognitive impairment. Nature Reviews Disease Primers, 4, 18003. https://doi.org/10.1038/nrdp.2018.3. (PMID: 10.1038/nrdp.2018.329446769) ; van Doorn, R., Lopes Pinheiro, M. A., Kooij, G., Lakeman, K., van het Hof, B., van der Pol, S. M., et al. (2012). Sphingosine 1-phosphate receptor 5 mediates the immune quiescence of the human brain endothelial barrier. Journal of Neuroinflammation, 9, 133. https://doi.org/10.1186/1742-2094-9-133. (PMID: 10.1186/1742-2094-9-133227159763425155) ; Viswanathan, A., Rocca, W. A., & Tzourio, C. (2009). Vascular risk factors and dementia: How to move forward? Neurology, 72(4), 368–374. https://doi.org/10.1212/01.wnl.0000341271.90478.8e. (PMID: 10.1212/01.wnl.0000341271.90478.8e191718352677504) ; Wacker, B. K., Freie, A. B., Perfater, J. L., & Gidday, J. M. (2012). Junctional protein regulation by sphingosine kinase 2 contributes to blood-brain barrier protection in hypoxic preconditioning-induced cerebral ischemic tolerance. Journal of Cerebral Blood Flow and Metabolism, 32(6), 1014–1023. https://doi.org/10.1038/jcbfm.2012.3. (PMID: 10.1038/jcbfm.2012.3223142693367228) ; Wacker, B. K., Park, T. S., & Gidday, J. M. (2009). Hypoxic preconditioning-induced cerebral ischemic tolerance: Role of microvascular sphingosine kinase 2. Stroke, 40(10), 3342–3348. https://doi.org/10.1161/STROKEAHA.109.560714. (PMID: 10.1161/STROKEAHA.109.560714196440582753710) ; Wacker, B. K., Perfater, J. L., & Gidday, J. M. (2012). Hypoxic preconditioning induces stroke tolerance in mice via a cascading HIF, sphingosine kinase, and CCL2 signaling pathway. Journal of Neurochemistry, 123(6), 954–962. https://doi.org/10.1111/jnc.12047. (PMID: 10.1111/jnc.12047230435443514614) ; Waeber, C. (2013). Sphingosine 1-Phosphate (S1P) Signaling and the Vasculature. In Lysophospholipid Receptors (pp. 313–347): John Wiley & Sons, Inc. ; Wallin, A., Roman, G. C., Esiri, M., Kettunen, P., Svensson, J., Paraskevas, G. P., et al. (2018). Update on vascular cognitive impairment associated with subcortical small-vessel disease. Journal of Alzheimers Disease, 62(3), 1417–1441. https://doi.org/10.3233/JAD-170803. (PMID: 10.3233/JAD-170803) ; Wang, W., Shanmugam, M. K., Xiang, P., Yam, T. Y. A., Kumar, V., Chew, W. S., et al. (2020). Sphingosine 1-phosphate receptor 2 induces otoprotective responses to cisplatin treatment. Cancers (Basel). https://doi.org/10.3390/cancers12010211. (PMID: 10.3390/cancers12010211332605587711896) ; Wang, W., Xiang, P., Chew, W. S., Torta, F., Bandla, A., Lopez, V., et al. (2020). Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. J Biol Chem, 295(4), 1143–1152. https://doi.org/10.1074/jbc.RA119.011699. (PMID: 10.1074/jbc.RA119.01169931882542) ; Wang, Z., Higashikawa, K., Yasui, H., Kuge, Y., Ohno, Y., Kihara, A., et al. (2020). FTY720 protects against ischemia-reperfusion injury by preventing the redistribution of tight junction proteins and decreases inflammation in the subacute phase in an experimental stroke model. Translational Stroke Research, 11(5), 1103–1116. https://doi.org/10.1007/s12975-020-00789-x. (PMID: 10.1007/s12975-020-00789-x321034627496052) ; Washida, K., Hattori, Y., & Ihara, M. (2019). Animal models of chronic cerebral hypoperfusion: From mouse to primate. International Journal of Molecular Science. https://doi.org/10.3390/ijms20246176. (PMID: 10.3390/ijms20246176) ; Wei, Y., Yemisci, M., Kim, H. H., Yung, L. M., Shin, H. K., Hwang, S. K., et al. (2011). Fingolimod provides long-term protection in rodent models of cerebral ischemia. Annals of Neurology, 69(1), 119–129. https://doi.org/10.1002/ana.22186. (PMID: 10.1002/ana.2218621280082) ; Wilkerson, B. A., Grass, G. D., Wing, S. B., Argraves, W. S., & Argraves, K. M. (2012). Sphingosine 1-phosphate (S1P) carrier-dependent regulation of endothelial barrier: High density lipoprotein (HDL)-S1P prolongs endothelial barrier enhancement as compared with albumin-S1P via effects on levels, trafficking, and signaling of S1P1. Journal of Biological Chemistry, 287(53), 44645–44653. https://doi.org/10.1074/jbc.M112.423426. (PMID: 10.1074/jbc.M112.423426) ; Wiltshire, R., Nelson, V., Kho, D. T., Angel, C. E., O’Carroll, S. J., & Graham, E. S. (2016). Regulation of human cerebro-microvascular endothelial baso-lateral adhesion and barrier function by S1P through dual involvement of S1P1 and S1P2 receptors. Sci Rep, 6, 19814. https://doi.org/10.1038/srep19814. (PMID: 10.1038/srep19814268135874728386) ; Woodruff, T. M., Thundyil, J., Tang, S. C., Sobey, C. G., Taylor, S. M., & Arumugam, T. V. (2011). Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener, 6(1), 11. https://doi.org/10.1186/1750-1326-6-11. (PMID: 10.1186/1750-1326-6-11212660643037909) ; Xiong, & Hla, T. (2014). S1P control of endothelial integrity. Current Topics in Microbiology and Immunology, 378, 85–105. https://doi.org/10.1007/978-3-319-05879-5_4. (PMID: 10.1007/978-3-319-05879-5_4) ; Xiong, & Mok, V. (2011). Age-related white matter changes. J Aging Res, 2011, 617927. https://doi.org/10.4061/2011/617927. (PMID: 10.4061/2011/617927) ; Xu, H. L., Pelligrino, D. A., Paisansathan, C., & Testai, F. D. (2015). Protective role of fingolimod (FTY720) in rats subjected to subarachnoid hemorrhage. Journal of Neuroinflammation, 12, 16. https://doi.org/10.1186/s12974-015-0234-7. (PMID: 10.1186/s12974-015-0234-7256229804324852) ; Xu, S. Z., Muraki, K., Zeng, F., Li, J., Sukumar, P., Shah, S., et al. (2006). A sphingosine-1-phosphate-activated calcium channel controlling vascular smooth muscle cell motility. Circulation Research, 98(11), 1381–1389. https://doi.org/10.1161/01.RES.0000225284.36490.a2. (PMID: 10.1161/01.RES.0000225284.36490.a2166757172648505) ; Yanagida, K., & Hla, T. (2017). Vascular and immunobiology of the circulatory sphingosine 1-phosphate gradient. Annual Review of Physiology, 79, 67–91. https://doi.org/10.1146/annurev-physiol-021014-071635. (PMID: 10.1146/annurev-physiol-021014-07163527813829) ; Yang, Y., Torta, F., Arai, K., Wenk, M. R., Herr, D. R., Wong, P. T., et al. (2016). Sphingosine kinase inhibition ameliorates chronic hypoperfusion-induced white matter lesions. Neurochemistry International, 94, 90–97. https://doi.org/10.1016/j.neuint.2016.02.012. (PMID: 10.1016/j.neuint.2016.02.01226921668) ; Yasuda, K., Maki, T., Saito, S., Yamamoto, Y., Kinoshita, H., Choi, Y. K., et al. (2019). Effect of fingolimod on oligodendrocyte maturation under prolonged cerebral hypoperfusion. Brain Research, 1720, 146294. https://doi.org/10.1016/j.brainres.2019.06.013. (PMID: 10.1016/j.brainres.2019.06.01331201815) ; Yatomi, Y., Ozaki, Y., Ohmori, T., & Igarashi, Y. (2001). Sphingosine 1-phosphate: Synthesis and release. Prostaglandins & Other Lipid Mediators, 64(1–4), 107–122. https://doi.org/10.1016/s0090-6980(01)00103-4. (PMID: 10.1016/s0090-6980(01)00103-4) ; Yung, L. M., Wei, Y., Qin, T., Wang, Y., Smith, C. D., & Waeber, C. (2012). Sphingosine kinase 2 mediates cerebral preconditioning and protects the mouse brain against ischemic injury. Stroke, 43(1), 199–204. https://doi.org/10.1161/STROKEAHA.111.626911. (PMID: 10.1161/STROKEAHA.111.62691121980199) ; Zhang, G., Yang, L., Kim, G. S., Ryan, K., Lu, S., O’Donnell, R. K., et al. (2013). Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood, 122(3), 443–455. https://doi.org/10.1182/blood-2012-11-467191. (PMID: 10.1182/blood-2012-11-467191237234503716205) ; Zhao, P., Liu, I. D., Hodgin, J. B., Benke, P. I., Selva, J., Torta, F., et al. (2020). Responsiveness of sphingosine phosphate lyase insufficiency syndrome to vitamin B6 cofactor supplementation. Journal of Inherited Metabolic Disease. https://doi.org/10.1002/jimd.12238. (PMID: 10.1002/jimd.12238322330357540352) ; Zheng, S., Wei, S., Wang, X., Xu, Y., Xiao, Y., Liu, H., et al. (2015). Sphingosine kinase 1 mediates neuroinflammation following cerebral ischemia. Experimental Neurology, 272, 160–169. https://doi.org/10.1016/j.expneurol.2015.03.012. (PMID: 10.1016/j.expneurol.2015.03.01225797575) ; Zhu, Z., Fu, Y., Tian, D., Sun, N., Han, W., Chang, G., et al. (2015). Combination of the immune modulator fingolimod with alteplase in acute ischemic stroke: A pilot trial. Circulation, 132(12), 1104–1112. https://doi.org/10.1161/CIRCULATIONAHA.115.016371. (PMID: 10.1161/CIRCULATIONAHA.115.016371262028114580515) ; Zsuga, J., Gesztelyi, R., Kemeny-Beke, A., Fekete, K., Mihalka, L., Adrienn, S. M., et al. (2012). Different effect of hyperglycemia on stroke outcome in non-diabetic and diabetic patients: A cohort study. Neurological Research, 34(1), 72–79. https://doi.org/10.1179/1743132811Y.0000000062. (PMID: 10.1179/1743132811Y.000000006222196865)
  • Contributed Indexing: Keywords: Alzheimer's disease; Ceramide; Cerebrovascular disease; Dementia; Lipid signaling; Sphingolipids; Stroke
  • Substance Nomenclature: 0 (Lysophospholipids) ; 0 (Sphingosine-1-Phosphate Receptors) ; 26993-30-6 (sphingosine 1-phosphate) ; EC 2.7.1.- (Phosphotransferases (Alcohol Group Acceptor)) ; EC 2.7.1.- (Sphk1 protein, mouse) ; EC 2.7.1.- (sphingosine kinase) ; EC 2.7.1.91 (sphingosine kinase 2, human) ; EC 4.1.2.- (Aldehyde-Lyases) ; EC 4.1.2.27 (SGPL1 protein, human) ; G926EC510T (Fingolimod Hydrochloride) ; NGZ37HRE42 (Sphingosine)
  • Entry Date(s): Date Created: 20201112 Date Completed: 20211122 Latest Revision: 20211122
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -