Zum Hauptinhalt springen

Tardive neurotoxicity of anticholinergic drugs: A review.

Marzoughi, S ; Banerjee, A ; et al.
In: Journal of neurochemistry, Jg. 158 (2021-09-01), Heft 6, S. 1334-1344
Online academicJournal

Titel:
Tardive neurotoxicity of anticholinergic drugs: A review.
Autor/in / Beteiligte Person: Marzoughi, S ; Banerjee, A ; Jutzeler, CR ; Prado, MAM ; Rosner, J ; Cragg, JJ ; Cashman, N
Link:
Zeitschrift: Journal of neurochemistry, Jg. 158 (2021-09-01), Heft 6, S. 1334-1344
Veröffentlichung: 2001- : Oxford, UK : Wiley on behalf of the International Society for Neurochemistry ; <i>Original Publication</i>: New York : Raven Press, 2021
Medientyp: academicJournal
ISSN: 1471-4159 (electronic)
DOI: 10.1111/jnc.15244
Schlagwort:
  • Animals
  • Brain pathology
  • Cholinergic Neurons drug effects
  • Cholinergic Neurons metabolism
  • Cholinergic Neurons pathology
  • Humans
  • Tardive Dyskinesia pathology
  • Brain drug effects
  • Brain metabolism
  • Cholinergic Antagonists adverse effects
  • Tardive Dyskinesia chemically induced
  • Tardive Dyskinesia metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't; Review
  • Language: English
  • [J Neurochem] 2021 Sep; Vol. 158 (6), pp. 1334-1344. <i>Date of Electronic Publication: </i>2021 Jan 07.
  • MeSH Terms: Brain / *drug effects ; Brain / *metabolism ; Cholinergic Antagonists / *adverse effects ; Tardive Dyskinesia / *chemically induced ; Tardive Dyskinesia / *metabolism ; Animals ; Brain / pathology ; Cholinergic Neurons / drug effects ; Cholinergic Neurons / metabolism ; Cholinergic Neurons / pathology ; Humans ; Tardive Dyskinesia / pathology
  • References: Aghourian, M., Legault-Denis, C., Soucy, J. P., Rosa-Neto, P., Gauthier, S., Kostikov, A., Gravel, P., & Bedard, M. A. (2017). Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Molecular Psychiatry, 22, 1531-1538. ; American Geriatrics Society Beers Criteria® Update Expert Panel. (2019). American Geriatrics Society 2019 Updated AGS Beers Criteria® for Potentially Inappropriate Medication Use in Older Adults. Journal of the American Geriatrics Society, 67, 674-694. ; Bertuzzi, M., & Ampatzis, K. (2018). Spinal cholinergic interneurons differentially control motoneuron excitability and alter the locomotor network operational range. Scientific Reports, 8, 1-10. ; Binning, W., Hogan-Cann, A. E., Sakae, D. Y., Maksoud, M., Ostapchenko, V., Al-Onaizi, M., Matovic, S., Lu, W. Y., Prado, M. A., Inoue, W., & Prado, V. F. (2020) Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. bioRxiv, 88, 791-801. ; Bohnen, N. I., Kaufer, D. I., Ivanco, L. S., Lopresti, B., Koeppe, R. A., Davis, J. G., Mathis, C. A., Moore, R. Y., & DeKosky, S. T. (2020). Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Archives of Neurology, 60, 1745-1748. ; Boustani, M., Campbell, N., Munger, S., Maidment, I., & Fox, C. (2008). Impact of anticholinergics on the aging brain: A review and practical application. ; Braak, H., Del Tredici, K., Rüb, U., De Vos, R. A. I., Jansen Steur, E. N. H., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197-211. ; Brichta, L., Greengard, P., & Flajolet, M. (2013) Advances in the pharmacological treatment of Parkinson’s disease: Targeting neurotransmitter systems. Trends in Neurosciences, 36, 543-554. ; Campanari, M. L., García-Ayllón, M. S., Ciura, S., Sáez-Valero, J., & Kabashi, E. (2016). Neuromuscular junction impairment in amyotrophic lateral sclerosis: Reassessing the role of acetylcholinesterase. Frontiers in Molecular Neuroscience, 9, 160. ; Carnahan, R. M., Lund, B. C., Perry, P. J., Pollock, B. G., & Gulp, K. R. (2006). The anticholinergic drug scale as a measure of drug-related anticholinergic burden: Associations with serum anticholinergic activity. Journal of Clinical Pharmacology, 46, 1481-1486. ; Carrière, I., Fourrier-Reglat, A., Dartigues, J. F., Rouaud, O., Pasquier, F., Ritchie, K., & Ancelin, M. L. (2009). Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: The 3-city study. Archives of Internal Medicine, 169, 1317-1324. ; Cavedo, E., Lista, S., Houot, M., Vergallo, A., Grothe, M. J., Teipel, S., Zetterberg, H., Blennow, K., Habert, M. O., Potier, M. C., & Dubois, B. (2020). Plasma tau correlates with basal forebrain atrophy rates in people at risk for Alzheimer disease. Neurology, 94, e30-e41. ; Chew, M. L., Mulsant, B. H., Pollock, B. G., Lehman, M. E., Greenspan, A., Mahmoud, R. A., Kirshner, M. A., Sorisio, D. A., Bies, R. R., & Gharabawi, G. (2008). Anticholinergic activity of 107 medications commonly used by older adults. Journal of the American Geriatrics Society, 56, 1333-1341. ; Colovic, M. B., Krstic, D. Z., Lazarevic-Pasti, T. D., Bondzic, A. M., & Vasic, V. M. (2013). Acetylcholinesterase inhibitors: Pharmacology and toxicology. Current Neuropharmacology, 11, 315-335. ; Coupland, C. A. C., Hill, T., Dening, T., Morriss, R., Moore, M., & Hippisley-Cox, J. (2019). Anticholinergic drug exposure and the risk of dementia: A nested case-control study. JAMA Internal Medicine, 179, 1084-1093. ; Cuenca-López, M. D., Brea, D., Segura, T., Galindo, M. F., Antón-Martínez, D., Agulla, J., Castillo, J., & Jordán, J. (2010). Inflammation as a therapeutic agent in cerebral infarction: Cellular inflammatory response and inflammatory mediators. Revista De Neurologia, 50, 349-359. ; Davis, A. A., Fritz, J. J., Wess, J., Lah, J. J., & Levey, A. I. (2010). Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. Journal of Neuroscience, 30, 4190-4196. ; Durán, C. E., Azermai, M., & Stichele, R. H. V. (2013) Systematic review of anticholinergic risk scales in older adults. European Journal of Clinical Pharmacology, 69, 1485-1496. ; Eglen, R. M. (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Autonomic and Autacoid Pharmacology, 26, 219-233. ; Eglen, R. M. (2012) Overview of muscarinic receptor subtypes. ; Evans, L. D., Wassmer, T., Fraser, G., Smith, J., Perkinton, M., Billinton, A., & Livesey, F. J. (2018). Extracellular monomeric and aggregated tau efficiently enter human neurons through overlapping but distinct pathways. Cell Reports, 22, 3612-3624. https://doi.org/10.1016/j.celrep.2018.03.021. ; Fischer, L. R., Culver, D. G., Tennant, P., Davis, A. A., Wang, M., Castellano-Sanchez, A., Khan, J., Polak, M. A., & Glass, J. D. (2004). Amyotrophic lateral sclerosis is a distal axonopathy: Evidence in mice and man. Experimental Neurology, 185, 232-240. https://doi.org/10.1016/j.expneurol.2003.10.004. ; Fisher, A., Bezprozvanny, I., Wu, L., Ryskamp, D. A., Bar-Ner, N., Natan, N., Brandeis, R., Elkon, H., Nahum, V., Gershonov, E., LaFerla, F. M., & Medeiros, R. (2016) AF710B, a novel M1/σ1 agonist with therapeutic efficacy in animal models of Alzheimer’s disease. Neurodegenerative Diseases, 16(1-2), 95-110. https://doi.org/10.1159/000440864. ; Friedman, A., Kaufer, D., Shemer, J., Hendler, I., Soreq, H., & Tur-Kaspa, I. (1996). Pyridostigmine brain penetration under stress enhances neuronal excitability and induces early immediate transcriptional response. Nature Medicine, 2, 1382-1385. ; Gamble, D. T., Clark, A. B., Luben, R. N., Wareham, N. J., Khaw, K. T., & Myint, P. K. (2018). Baseline anticholinergic burden from medications predicts incident fatal and non-fatal stroke in the EPIC-Norfolk general population. International Journal of Epidemiology, 47, 625-633. ; Gericke, A., Sniatecki, J. J., Mayer, V. G. A., Goloborodko, E., Patzak, A., Wess, J., & Pfeiffer, N. (2011). Role of m1, m3, and m5 muscarinic acetylcholine receptors in cholinergic dilation of small arteries studied with gene-targeted mice. American Journal of Physiology-Heart and Circulatory Physiology, 300, H1602-H1608. ; Gerretsen, P., & Pollock, B. G. (2011). Drugs with anticholinergic properties: A current perspective on use and safety. Expert Opinion on Drug Safety, 10, 751-765. ; Gray, S. L., Anderson, M. L., Dublin, S., Hanlon, J. T., Hubbard, R., Walker, R., Yu, O., Crane, P. K., & Larson, E. B. (2015). Cumulative use of strong anticholinergics and incident dementia: A prospective cohort study. JAMA Internal Medicine, 175, 401-407. ; Kaltsatou, A., Fotiou, D., Tsiptsios, D., & Orologas, A. (2015). Cognitive impairment as a central cholinergic deficit in patients with Myasthenia Gravis. BBA Clinical, 3, 299-303. https://doi.org/10.1016/j.bbacli.2015.04.003. ; Kolisnyk, B., Al-Onaizi, M., Soreq, L., Barbash, S., Bekenstein, U., Haberman, N., Hanin, G., Kish, M. T., Souza da Silva, J., Fahnestock, M., & Ule, J. (2017). Cholinergic surveillance over hippocampal RNA metabolism and Alzheimer’s-like pathology. Cerebral Cortex, 27, 3553-3567. ; Kuhl, D. E., Koeppe, R. A., Minoshima, S., Snyder, S. E., Ficaro, E. P., Foster, N. L., Frey, K. A., & Kilbourn, M. R. (1999). In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology, 52, 691-699. https://doi.org/10.1212/WNL.52.4.691. ; Lange, K. W., Wells, F. R., Jenner, P., & Marsden, C. D. (1993). Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s disease. Journal of Neurochemistry, 60, 197-203. https://doi.org/10.1111/j.1471-4159.1993.tb05838.x. ; Langmead, C. J., Watson, J., & Reavill, C. (2008). Muscarinic acetylcholine receptors as CNS drug targets. Pharmacology & Therapeutics, 117(2), 232-243. https://doi.org/10.1016/j.pharmthera.2007.09.009. ; Lindholm, D., da Penha Berzaghi, M., Cooper, J., Thoenen, H., & Castrén, E. (1994) Brain-derived neurotrophic factor and neurotrophin-4 increase neurotrophin-3 expression in the rat hippocampus. International Journal of Developmental Neuroscience, 12, 745-751. ; Morozova, V., Cohen, L. S., Makki, A.-E.-H., Shur, A., Pilar, G., Idrissi, A., & El, A. A. D. (2019). Normal and pathological tau uptake mediated by M1/M3 muscarinic receptors promotes opposite neuronal changes. Frontiers in Cellular Neuroscience, 13, 403. https://doi.org/10.3389/fncel.2019.00403. ; Medeiros, R., Kitazawa, M., Caccamo, A., Baglietto-Vargas, D., Estrada-Hernandez, T., Cribbs, D. H., Fisher, A., & Laferla, F. M. (2011). Loss of muscarinic M1 receptor exacerbates Alzheimer’s disease-like pathology and cognitive decline. American Journal of Pathology, 179, 980-991. ; Muir, J. L. (1997). Acetylcholine, aging, and Alzheimer’s disease. Pharmacology, Biochemistry and Behavior, 56, 687-696. ; Müller, M. L. T. M., & Bohnen, N. I. (2013). Cholinergic dysfunction in parkinson’s disease. Current Neurology and Neuroscience Reports, 13, 377. ; Nagao, M., Misawa, H., Kato, S., & Hirai, S. (1998). Loss of cholinergic synapses on the spinal motor neurons of amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurology, 57, 329-333. ; Newman, E. L., Gupta, K., Climer, J. R., Monaghan, C. K., & Hasselmo, M. E. (2012) Cholinergic modulation of cognitive processing: insights drawn from computational models. Frontiers in Behavioral Neuroscience, 6, 24. https://doi.org/10.3389/fnbeh.2012.00024. ; Oda, Y., Imai, S., Nakanishi, I., Ichikawa, T., & Deguchi, T. (1995). Immunohistochemical study on choline acetyltransferase in the spinal cord of patients with amyotrophic lateral sclerosis. Pathology International, 45, 933-939. ; Prado, V. F., Janickova, H., Al-Onaizi, M. A., & Prado, M. A. M. (2017). Cholinergic circuits in cognitive flexibility. Elsevier Ltd. ; Prado, V. F., Kolisnyk, B., Gros, R., & Prado, M. A. M. (2013). Regulation of cholinergic activity by the vesicular acetylcholine transporter Neurobiology View project Neuromuscular alterations in a congenital myasthenic syndrome (CMS) mouse model View project. Biochemical Journal, 450, 265-274. ; Radu, B. M., Osculati, A. M. M., Suku, E., Banciu, A., Tsenov, G., Merigo, F., Di Chio, M., Banciu, D. D., Tognoli, C., Kacer, P., & Giorgetti, A. (2017). All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Scientific Reports, 7, 1-15. ; Ragozzino, M. E., Artis, S., Singh, A., Twose, T. M., Beck, J. E., & Messer, W. S. (2012). The selective M 1 muscarinic cholinergic agonist CDD-0102A enhances working memory and cognitive flexibility. Journal of Pharmacology and Experimental Therapeutics, 340, 588-594. ; Risacher, S. L., McDonald, B. C., Tallman, E. F., West, J. D., Farlow, M. R., Unverzagt, F. W., Gao, S., Boustani, M., Crane, P. K., Petersen, R. C., & Jack, C. R. (2016). Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurology, 73, 721-732. ; Rudolph, J. L., Salow, M. J., Angelini, M. C., & McGlinchey, R. E. (2008) The anticholinergic risk scale and anticholinergic adverse effects in older persons. Archives of Internal Medicine, 168, 508-513. ; Sarter, M., & Parikh, V. (2005). Choline transporters, cholinergic transmission and cognition. Nature Reviews Neuroscience, 6, 48-56. ; Sato, A., Sato, Y., & Uchida, S. (2004). Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cerebral blood flow in the rat’s cortex and hippocampus. Neuroscience Letters, 361, 90-93. https://doi.org/10.1016/j.neulet.2004.01.004. ; Schmitz, T. W., Mur, M., Aghourian, M., Bedard, M. A., & Spreng, R. N. (2018). Longitudinal Alzheimer’s degeneration reflects the spatial topography of cholinergic basal forebrain projections. Cell Reports, 24, 38-46. https://doi.org/10.1016/j.celrep.2018.06.001. ; Schmitz, T. W., Soreq, H., Poirier, J., & Spreng, R. N. (2020). Longitudinal basal forebrain degeneration interacts with TREM2/C3 biomarkers of inflammation in pre-symptomatic Alzheimer’s disease. Journal of Neuroscience, 40, 1184-1219. ; Sejvar, J. J., Holman, R. C., Bresee, J. S., Kochanek, K. D., & Schonberger, L. B. (2005). Amyotrophic lateral sclerosis mortality in the United States, 1979-2001. Neuroepidemiology, 25, 144-152. https://doi.org/10.1159/000086679. ; Selkoe, D. J. (2001). Alzheimer's disease: Genes, proteins, and therapy. Physiological Reviews, 81(2), 741-766. ; Simón, D., Hernández, F., & Avila, J. (2013) The Involvement of cholinergic neurons in the spreading of tau pathology. Frontiers in Neurology, 4, 74. https://doi.org/10.3389/fneur.2013.00074. ; Sugita, S., Fleming, L. L., Wood, C., Vaughan, S. K., Gomes, M. P. S. M., Camargo, W., Naves, L. A., Prado, V. F., Prado, M. A. M., Guatimosim, C., & Valdez, G. (2016). VAChT overexpression increases acetylcholine at the synaptic cleft and accelerates aging of neuromuscular junctions. Skeletal Muscle, 6, 31. https://doi.org/10.1186/s13395-016-0105-7. ; Takeda, S. (2019). Progression of Alzheimer’s disease, tau propagation, and its modifiable risk factors. Neuroscience Research, 141, 36-42. ; Tune, L., Carr, S., Hoag, E., & Cooper, T. (1992). Anticholinergic effects of drugs commonly prescribed for the elderly: Potential means for assessing risk of delirium. American Journal of Psychiatry, 149, 1393-1394. ; Vinters, H. V., Zarow, C., Borys, E., Whitman, J. D., Tung, S., Ellis, W. G., Zheng, L., & Chui, H. C. (2018). Review: Vascular dementia: clinicopathologic and genetic considerations. Neuropathology and Applied Neurobiology, 44(3), 247-266. https://doi.org/10.1111/nan.12472. ; Wang, J., Zhang, H. Y., & Tang, X. C. (2009). Cholinergic deficiency involved in vascular dementia: Possible mechanism and strategy of treatment. Nature Publishing Group. ; Yamada, M., Lamping, K. G., Duttaroy, A., Zhang, W., Cui, Y., Bymaster, F. P., McKinzie, D. L., Felder, C. C., Deng, C. X., Faraci, F. M., & Wess, J. (2001). Cholinergic dilation of cerebral blood vessels is abolished in M5 muscarinic acetylcholine receptor knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 98, 14096-14101. ; Yldz, N., Akkoç, Y., Erhan, B., Gündüz, B., Ylmaz, B., Alaca, R., Gök, H., Köklü, K., Ersöz, M. U., Çınar, E., & Karapolat, H. A. (2014). Neurogenic bladder in patients with traumatic spinal cord injury: Treatment and follow-up. Spinal Cord, 52, 462-467. ; Yoshiyama, Y., Kojima, A., Itoh, K., Isose, S., Koide, M., Hori, K., & Arai, K. (2015) Does anticholinergic activity affect neuropathology? Implication of neuroinflammation in Alzheimer’s disease. Neurodegenerative Diseases, 15, 140-148. ; Yoshiyama, Y., Kojima, A., Itoh, K., Uchiyama, T., & Arai, K. (2012). Anticholinergics boost the pathological process of neurodegeneration with increased inflammation in a tauopathy mouse model. Neurobiology of Diseases, 45, 329-336. ; Zhu, H., Yan, H., Tang, N., Li, X., Pang, P., Li, H., Chen, W., Guo, Y., Shu, S., Cai, Y., & Pei, L. (2017). Impairments of spatial memory in an Alzheimer’s disease model via degeneration of hippocampal cholinergic synapses. Nature Communications, 8, 1-13.
  • Substance Nomenclature: 0 (Cholinergic Antagonists)
  • Entry Date(s): Date Created: 20201122 Date Completed: 20211117 Latest Revision: 20211117
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -