Zum Hauptinhalt springen

Genetic variants and risk of thyroid cancer among Iranian patients.

Jamshidi, M ; Farnoosh, G ; et al.
In: Hormone molecular biology and clinical investigation, Jg. 42 (2021-02-08), Heft 2, S. 223-234
academicJournal

Titel:
Genetic variants and risk of thyroid cancer among Iranian patients.
Autor/in / Beteiligte Person: Jamshidi, M ; Farnoosh, G ; Mohammadi Pour, S ; Rafiee, F ; Saeedi Boroujeni, A ; Mahmoudian-Sani, MR
Zeitschrift: Hormone molecular biology and clinical investigation, Jg. 42 (2021-02-08), Heft 2, S. 223-234
Veröffentlichung: Berlin : De Gruyter, 2021
Medientyp: academicJournal
ISSN: 1868-1891 (electronic)
DOI: 10.1515/hmbci-2020-0051
Schlagwort:
  • DNA Repair
  • Gene Expression Regulation, Neoplastic
  • Genetic Predisposition to Disease
  • Genetic Variation
  • Humans
  • Iran epidemiology
  • Risk Factors
  • Thyroid Neoplasms epidemiology
  • Polymorphism, Single Nucleotide
  • Thyroid Neoplasms genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Horm Mol Biol Clin Investig] 2021 Feb 08; Vol. 42 (2), pp. 223-234. <i>Date of Electronic Publication: </i>2021 Feb 08.
  • MeSH Terms: Polymorphism, Single Nucleotide* ; Thyroid Neoplasms / *genetics ; DNA Repair ; Gene Expression Regulation, Neoplastic ; Genetic Predisposition to Disease ; Genetic Variation ; Humans ; Iran / epidemiology ; Risk Factors ; Thyroid Neoplasms / epidemiology
  • References: Deandrea, M, Gallone, G, Veglio, M, Balsamo, A, Grassi, A, Sapelli, S, et al.. Thyroid cancer histotype changes as observed in a major general hospital in a 21-year period. J Endocrinol Invest 1997;20:52–8. https://doi.org/10.1007/bf03347976. ; Feldt-Rasmussen, U. Iodine and cancer. Thyroid 2001;11:483–6. https://doi.org/10.1089/105072501300176435. ; Kohler, BA, Ward, E, McCarthy, BJ, Schymura, MJ, Ries, LA, Eheman, C, et al.. Annual report to the nation on the status of cancer, 1975–2007, featuring tumors of the brain and other nervous system. J Natl Cancer Inst 2011;103:714–36. https://doi.org/10.1093/jnci/djr077. ; Jemal, A, Bray, F, Center, MM, Ferlay, J, Ward, E, Forman, D. Global cancer statistics. CA A Cancer J Clin 2011;61:69–90. https://doi.org/10.3322/caac.20107. ; Chen, AY, Jemal, A, Ward, EM. Increasing incidence of differentiated thyroid cancer in the United States, 1988–2005. Cancer: Interdiscipl Int J Am Cancer Soc 2009;115:3801–7. https://doi.org/10.1002/cncr.24416. ; Segev, DL, Umbricht, C, Zeiger, MA. Molecular pathogenesis of thyroid cancer. Surg Oncol 2003;12:69–90. https://doi.org/10.1016/s0960-7404(03)00037-9. ; Torlontano, M, Attard, M, Crocetti, U, Tumino, S, Bruno, R, Costante, G, et al.. Follow-up of low risk patients with papillary thyroid cancer: role of neck ultrasonography in detecting lymph node metastases. J Clin Endocrinol Metabol 2004;89:3402–7. https://doi.org/10.1210/jc.2003-031521. ; Xu, L, Port, M, Landi, S, Gemignani, F, Cipollini, M, Elisei, R, et al.. Obesity and the risk of papillary thyroid cancer: a pooled analysis of three case–control studies. Thyroid: Off J Am Thyroid Assoc 2014;24:966–74. https://doi.org/10.1089/thy.2013.0566. ; Oberman, B, Khaku, A, Camacho, F, Goldenberg, D. Relationship between obesity, diabetes and the risk of thyroid cancer. Am J Otolaryngol 2015;36:535–41. https://doi.org/10.1016/j.amjoto.2015.02.015. ; Bann, DV, Goyal, N, Camacho, F, Goldenberg, D. Increasing incidence of thyroid cancer in the Commonwealth of Pennsylvania. JAMA Otolaryngol Head Neck Surg 2014;140:1149–56. https://doi.org/10.1001/jamaoto.2014.1709. ; Lehrer, S, Rosenzweig, KE. Cold climate is a risk factor for thyroid cancer. Clin Thyroidol 2014;26:273–6. https://doi.org/10.1089/ct.2014;26.273-276. ; Memon, A, De Gonzalez, AB, Luqmani, Y, Suresh, A. Family history of benign thyroid disease and cancer and risk of thyroid cancer. Eur J Canc 2004;40:754–60. https://doi.org/10.1016/j.ejca.2003.12.011. ; Ma, J, Huang, M, Wang, L, Ye, W, Tong, Y, Wang, H. Obesity and risk of thyroid cancer: evidence from a meta-analysis of 21 observational studies. Med Sci Mon Int Med J Exp Clin Res 2015;21:283. ; Hong, K-S, Son, J-W, Ryu, OH, Choi, M-G, Hong, JY, Lee, SJ. Cardiac effects of thyrotropin oversuppression with levothyroxine in young women with differentiated thyroid cancer. Int J Endocrinol 2016;2016:6. doi:https://doi.org/10.1155/2016/9846790. ; Khayamzadeh, M, Khayamzadeh, M, Tadayon, N, Salmanian, R, Zham, H, Razzaghi, Z, et al.. Survival of thyroid cancer and social determinants in Iran. Asian Pac J Cancer Prev 2011;12:95–8. ; Karkoobi, Y, Moradi, G, Sharifi, P, Ghafoori, S. Assessment of thyroid cancer risk factors in Kurdistan province. Sci J Kurdistan Univ Med Sci 2018;23:10–8. ; Morris, LG, Myssiorek, D. Improved detection does not fully explain the rising incidence of well-differentiated thyroid cancer: a population-based analysis. Am J Surg 2010;200:454–61. https://doi.org/10.1016/j.amjsurg.2009.11.008. ; Davies, L, Welch, HG. Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg 2014;140:317–22. https://doi.org/10.1001/jamaoto.2014.1. ; Erichsen, HC, Chanock, SJ. SNPs in cancer research and treatment. Br J Canc 2004;90:747–51. https://doi.org/10.1038/sj.bjc.6601574. ; Mehta, RG, Mehta, RR. Vitamin D and cancer. J Nutr Biochem 2002;13:252–64. https://doi.org/10.1016/s0955-2863(02)00183-3. ; Ordonez-Moran, P, Larriba, MJ, Pendas-Franco, N, Aguilera, O, Gonzalez-Sancho, JM, Munoz, A. Vitamin D and cancer: an update of in vitro and in vivo data. Front Biosci 2005;10:2723–49. https://doi.org/10.2741/1731. ; Slattery, ML. Vitamin D receptor gene (VDR) associations with cancer. Nutr Rev 2007;65:S102–S4. https://doi.org/10.1301/nr.2007.aug.s102-s104. ; Hutchinson, PE, Osborne, JE, Lear, JT, Smith, AG, Bowers, PW, Morris, PN, et al.. Vitamin D receptor polymorphisms are associated with altered prognosis in patients with malignant melanoma. Clin Canc Res 2000;6:498–504. ; Ntais, C, Polycarpou, A, Ioannidis, JPA. Vitamin D receptor gene polymorphisms and risk of prostate cancer: a meta-analysis. Cancer Epidemiol Biomark Prev 2003;12:1395–402. ; Ye, WZ, Reis, AF, Velho, G. Identification of a novel Tru9 I polymorphism in the human vitamin D receptor gene. J Hum Genet 2000;45:56–7. https://doi.org/10.1007/s100380050011. ; Penna-Martinez, M, Ramos-Lopez, E, Stern, J, Hinsch, N, Hansmann, M-L, Selkinski, I, et al.. Vitamin D receptor polymorphisms in differentiated thyroid carcinoma. Thyroid : Off J Am Thyroid Assoc 2009;19:623–8. https://doi.org/10.1089/thy.2008.0388. ; Haghpanah, V, Ghaffari, SH, Rahimpour, P, Abbasi, A, Saeedi, M, Pak, H, et al.. Vitamin D receptor gene polymorphisms in patients with thyroid cancer. Gene Ther Mol Biol B 2007;11:299–304. ; Horvatic Herceg, G, Herceg, D, Kralik, M, Kulic, A, Bence-Zigman, Z, Tomic-Brzac, H, et al.. Urokinase plasminogen activator and its inhibitor type-1 as prognostic factors in differentiated thyroid carcinoma patients. Otolaryngology-Head Neck Surg (Tokyo) 2013;149:533–40. https://doi.org/10.1177/0194599813496374. ; Ulisse, S, Baldini, E, Sorrenti, S, Barollo, S, Gnessi, L, Catania, A, et al.. High expression of the urokinase plasminogen activator and its cognate receptor associates with advanced stages and reduced disease-free interval in papillary thyroid carcinoma. J Clin Endocrinol Metabol 2011;96:504–8. https://doi.org/10.1210/jc.2010-1688. ; Mashiko, S, Kitatani, K, Toyoshima, M, Ichimura, A, Dan, T, Usui, T, et al.. Inhibition of plasminogen activator inhibitor-1 is a potential therapeutic strategy in ovarian cancer. Canc Biol Ther 2015;16:253–60. https://doi.org/10.1080/15384047.2014.1001271. ; Torres-Carrillo, N, Magdalena Torres-Carrillo, N, Vázquez-Del Mercado, M, Rangel-Villalobos, H, Parra-Rojas, I, Sánchez-Enríquez, S, et al.. Distribution of --844 G/A and Hind III C/G PAI-1 polymorphisms and plasma PAI-1 levels in Mexican subjects: comparison of frequencies between populations. Clin Appl Thromb Hemost 2008;14:220–6. https://doi.org/10.1177/1076029607304747. ; Palmirotta, R, Ferroni, P, Savonarola, A, Martini, F, Ciatti, F, Laudisi, A, et al.. Prognostic value of pre-surgical plasma PAI-1 (plasminogen activator inhibitor-1) levels in breast cancer. Thromb Res 2009;124:403–8. https://doi.org/10.1016/j.thromres.2009.02.014. ; Zhang, H, Dong, P, Yang, X, Liu, Z. Plasminogen activator inhibitor-1 4G/5G polymorphism is associated with coronary artery disease risk: a meta-analysis. Int J Clin Exp Med 2014;7:3777–88. ; Lewy-Trenda, I. Estrogen and progesterone receptors in neoplastic and non-neoplastic thyroid lesions. Pol J Pathol 2002;53:67–72. ; Money, SR, Muss, W, Thelmo, WL, Boeckl, O, Pimpl, W, Kaindl, H, et al.. Immunocytochemical localization of estrogen and progesterone receptors in human thyroid. Surgery 1989;106:975–9. ; Mazzaferri, EL, Young, RL, Oertel, JE, Kemmerer, WT, Page, CP. Papillary thyroid carcinoma: the impact of therapy in 576 patients. Medicine (Baltim) 1977;56:171–96. https://doi.org/10.1097/00005792-197705000-00001. ; Liu, J, Chen, G, Meng, X-Y, Liu, Z-H, Dong, S. Serum levels of sex hormones and expression of their receptors in thyroid tissue in female patients with various types of thyroid neoplasms. Pathol Res Pract 2014;210:830–5. https://doi.org/10.1016/j.prp.2014.09.002. ; Vasudevan, N, Ogawa, S, Pfaff, D. Estrogen and thyroid hormone receptor interactions: physiological flexibility by molecular specificity. Physiol Rev 2002;82:923–44. https://doi.org/10.1152/physrev.00014.2002. ; Shick, PC, Riordan, GP, Foss, RD. Estrogen and progesterone receptors in salivary gland adenoid cystic carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1995;80:440–4. https://doi.org/10.1016/s1079-2104(05)80338-5. ; Varley, JM. Germline TP53 mutations and Li-Fraumeni syndrome. Hum Mutat 2003;21:313–20. https://doi.org/10.1002/humu.10185. ; Noma, C, Miyoshi, Y, Taguchi, T, Tamaki, Y, Noguchi, S. Association of p53 genetic polymorphism (Arg72Pro) with estrogen receptor positive breast cancer risk in Japanese women. Canc Lett 2004;210:197–203. https://doi.org/10.1016/j.canlet.2004.03.031. ; Pietsch, E, Humbey, O. Polymorphisms in the p53 pathway. Philadelphia, PA, USA: Division of Medical Science, Fox Chase Cancer Center; 2006. ; Khadang, B, Fattahi, MJ, Talei, A, Dehaghani, AS, Ghaderi, A. Polymorphism of TP53 codon 72 showed no association with breast cancer in Iranian women. Canc Genet Cytogenet 2007;173:38–42. https://doi.org/10.1016/j.cancergencyto.2006.09.010. ; Boltze, C, Roessner, A, Landt, O, Szibor, R, Peters, B, Schneider-Stock, R. Homozygous proline at codon 72 of p53 as a potential risk factor favoring the development of undifferentiated thyroid carcinoma. Int J Oncol 2002;21:1151–4. ; Granja, F, Morari, J, Morari, EC, Correa, LAC, Assumpção, LVM, Ward, LS. Proline homozygosity in codon 72 of p53 is a factor of susceptibility for thyroid cancer. Canc Lett 2004;210:151–7. https://doi.org/10.1016/j.canlet.2004.01.016. ; Aral, C, Akkiprik, M, Kaya, H, Ataizi-Çelikel, C, Caglayan, S, Ozisik, G, et al.. Mitochondrial DNA common deletion is not associated with thyroid, breast and colorectal tumors in Turkish patients. Genet Mol Biol 2010;33:1–4. https://doi.org/10.1590/S1415-47572009005000102. ; Reis, AAS, Silva, DM, Curado, MP, da Cruz, AD. Involvement of CYP1A1, GST, 72TP53 polymorphisms in the pathogenesis of thyroid nodules. Genet Mol Res 2010;9:2222–9. https://doi.org/10.4238/vol9-4gmr807. ; Landers, JE, Cassel, SL, George, DL. Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Canc Res 1997;57:3562–8. ; Wade, M, Wang, YV, Wahl, GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010;20:299–309. https://doi.org/10.1016/j.tcb.2010.01.009. ; Wynendaele, J, Böhnke, A, Leucci, E, Nielsen, SJ, Lambertz, I, Hammer, S, et al.. An illegitimate microRNA target site within the 3’ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Canc Res 2010;70:9641–9. https://doi.org/10.1158/0008-5472.can-10-0527. ; McEvoy, J, Ulyanov, A, Brennan, R, Wu, G, Pounds, S, Zhang, J, et al.. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PloS One 2012;7:e42739-e. https://doi.org/10.1371/journal.pone.0042739. ; Eischen, CM, Lozano, G. The Mdm network and its regulation of p53 activities: a rheostat of cancer risk. Hum Mutat 2014;35:728–37. https://doi.org/10.1002/humu.22524. ; Senturk, E, Manfredi, JJ. Mdm2 and tumorigenesis: evolving theories and unsolved mysteries. Gene Canc 2012;3:192–8. https://doi.org/10.1177/1947601912457368. ; Thomasova, D, Mulay, SR, Bruns, H, Anders, H-J. p53-independent roles of MDM2 in NF-κB signaling: implications for cancer therapy, wound healing, and autoimmune diseases. Neoplasia 2012;14:1097–101. https://doi.org/10.1593/neo.121534. ; Zhang, F, Xu, L, Wei, Q, Song, X, Sturgis, EM, Li, G. Significance of MDM2 and P14ARF polymorphisms in susceptibility to differentiated thyroid carcinoma. Surgery 2013;153:711–7. https://doi.org/10.1016/j.surg.2012.11.009. ; Altieri, DC. Survivin in apoptosis control and cell cycle regulation in cancer. Prog Cell Cycle Res 2003;5:447–52. ; Altieri, DC. Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 2003;22:8581. https://doi.org/10.1038/sj.onc.1207113. ; Li, F. Role of survivin and its splice variants in tumorigenesis. Br J Canc 2005;92:212. https://doi.org/10.1038/sj.bjc.6602340. ; Tirrò, E, Consoli, ML, Massimino, M, Manzella, L, Frasca, F, Sciacca, L, et al.. Altered expression of c-IAP1, survivin, and Smac contributes to chemotherapy resistance in thyroid cancer cells. Canc Res 2006;66:4263–72. https://doi.org/10.1158/0008-5472.can-05-3248. ; Selemetjev, SA, Savin, SB, Paunovic, IR, Tatic, SB, Cvejic, D. Changes in the expression pattern of apoptotic molecules (galectin-3, Bcl-2, Bax, survivin) during progression of thyroid malignancy and their clinical significance. Wien Klin Wochenschr 2015;127:337–44. https://doi.org/10.1007/s00508-014-0674-6. ; Chen, Z, Liu, N, Zhu, G, Dralle, H, Hoang-Vu, C. Targeting of the anti-apoptotic gene survivin in human thyroid carcinoma. Int J Mol Med 2012;30:465–72. https://doi.org/10.3892/ijmm.2012.1046. ; Pannone, G, Santoro, A, Pasquali, D, Zamparese, R, Mattoni, M, Russo, G, et al.. The role of survivin in thyroid tumors: differences of expression in well-differentiated, non–well-differentiated, and anaplastic thyroid cancers. Thyroid 2014;24:511–9. https://doi.org/10.1089/thy.2013.0196. ; Mahaney, BL, Meek, K, Lees-Miller, SP. Repair of ionizing radiation-induced DNA double-strand breaks by non-homologous end-joining. Biochem J 2009;417:639–50. https://doi.org/10.1042/bj20080413. ; Mani, RS, Yu, Y, Fang, S, Lu, M, Fanta, M, Zolner, AE, et al.. Dual modes of interaction between XRCC4 and polynucleotide kinase/phosphatase implications for nonhomologous end joining. J Biol Chem 2010;285:37619–29. https://doi.org/10.1074/jbc.m109.058719. ; Siraj, A, Al-Rasheed, M, Ibrahim, M, Siddiqui, K, Al-Dayel, F, Al-Sanea, O, et al.. RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. J Endocrinol Invest 2008;31:893–9. https://doi.org/10.1007/bf03346438. ; Gomes, BC, Silva, SN, Azevedo, AP, Manita, I, Gil, OM, Ferreira, TC, et al.. The role of common variants of non-homologous end-joining repair genes XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol Rep 2010;24:1079–85. ; Chiang, F-Y, Wu, C-W, Hsiao, P-J, Kuo, W-R, Lee, K-W, Lin, J-C, et al.. Association between polymorphisms in DNA base excision repair genes XRCC1, APE1, and ADPRT and differentiated thyroid carcinoma. Clin Canc Res 2008;14:5919–24. https://doi.org/10.1158/1078-0432.ccr-08-0906. ; Zhu, Q, Bian, J, Shen, Q, Jiang, F, Tang, H, Zhang, H, et al.. Genetic polymorphisms in X-ray repair cross-complementing gene 1 and susceptibility to papillary thyroid carcinoma. Zhonghua Liuxingbingxue Zazhi 2004;25:702–5. ; Ho, T, Li, G, Lu, J, Zhao, C, Wei, Q, Sturgis, EM. Association of XRCC1 polymorphisms and risk of differentiated thyroid carcinoma: a case–control analysis. Thyroid 2009;19:129–35. https://doi.org/10.1089/thy.2008.0153. ; Ryu, RA, Tae, K, Min, HJ, Jeong, JH, Cho, SH, Lee, SH, et al.. XRCC1 polymorphisms and risk of papillary thyroid carcinoma in a Korean sample. J Kor Med Sci 2011;26:991–5. https://doi.org/10.3346/jkms.2011.26.8.991. ; Okamura, H, Tsutsui, H, Komatsu, T, Yutsudo, M, Hakura, A, Tanimoto, T, et al.. Cloning of a new cytokine that induces IFN-γ production by T cells. Nature 1995;378:88. https://doi.org/10.1038/378088a0. ; Takiyama, Y, Miyokawa, N, Tokusashi, Y, Ito, K, Kato, S, Kimura, S, et al.. Thyroid-stimulating hormone induces interleukin-18 gene expression in FRTL-5 cells: immunohistochemical detection of interleukin-18 in autoimmune thyroid disease. Thyroid 2002;12:935–43. https://doi.org/10.1089/105072502320908268. ; Liu, Z, Wang, H, Xiao, W, Wang, C, Liu, G, Hong, T. Thyrocyte interleukin‐18 expression is up‐regulated by interferon‐γ and may contribute to thyroid destruction in Hashimoto’s thyroiditis. Int J Exp Pathol 2010;91:420–5. https://doi.org/10.1111/j.1365-2613.2010.00715.x. ; Kalina, U, Ballas, K, Koyama, N, Kauschat, D, Miething, C, Arnemann, J, et al.. Genomic organization and regulation of the human interleukin‐18 gene: FRONTLINES. Scand J Immunol 2000;52:525–30. https://doi.org/10.1046/j.1365-3083.2000.00836.x. ; Giedraitis, V, He, B, Huang, W-X, Hillert, J. Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol 2001;112:146–52. https://doi.org/10.1016/s0165-5728(00)00407-0. ; Haghshenas, MR, Hosseini, SV, Mahmoudi, M, Saberi‐Firozi, M, Farjadian, S, Ghaderi, A. IL‐18 serum level and IL‐18 promoter gene polymorphism in Iranian patients with gastrointestinal cancers. J Gastroenterol Hepatol 2009;24:1119–22. https://doi.org/10.1111/j.1440-1746.2009.05791.x. ; Razmkhah, M, Doroudchi, M, Mojtahedi, Z, Ghaderi, A. Association of Interleukin18 gene promoter polymorphisms with breast cancer. Neoplasma 2009;56:1. ; Farjadfar, A, Mojtahedi, Z, Ghayumi, MA, Erfani, N, Haghshenas, MR, Ghaderi, A. Interleukin-18 promoter polymorphism is associated with lung cancer: a case-control study. Acta Oncol 2009;48:971–6. https://doi.org/10.1080/02841860902878145. ; Walker, LS, Sansom, DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 2011;11:852. https://doi.org/10.1038/nri3108. ; Ghaderi, A. CTLA4 gene variants in autoimmunity and cancer: a comparative review. Iran J Immunol 2011;8:127–49. ; Karabon, L, Kosmaczewska, A, Bilinska, M, Pawlak, E, Ciszak, L, Jedynak, A, et al.. The CTLA‐4 gene polymorphisms are associated with CTLA‐4 protein expression levels in multiple sclerosis patients and with susceptibility to disease. Immunology 2009;128:e787–e96. https://doi.org/10.1111/j.1365-2567.2009.03083.x. ; Ligers, A, Teleshova, N, Masterman, T, Huang, W, Hillert, J. CTLA-4 gene expression is influenced by promoter and exon 1 polymorphisms. Gene Immun 2001;2:145. https://doi.org/10.1038/sj.gene.6363752. ; Chang, D-F, Chen, X-H, Huang, J, Sun, Y-M, Zhu, D-Y, Xu, Z-Q. CTLA-4 gene polymorphisms associate with efficacy of postoperative radioiodine-131 for differentiated thyroid carcinoma. Future Oncol 2017;13:1057–68. https://doi.org/10.2217/fon-2016-0399. ; Okazaki, T, Maeda, A, Nishimura, H, Kurosaki, T, Honjo, T. PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci 2001 98:13866–71. https://doi.org/10.1073/pnas.231486598. ; French, JD, Kotnis, GR, Said, S, Raeburn, CD, McIntyre, RCJr, Klopper, JP, et al.. Programmed death-1+ T cells and regulatory T cells are enriched in tumor-involved lymph nodes and associated with aggressive features in papillary thyroid cancer. J Clin Endocrinol Metabol 2012;97:E934–E43. https://doi.org/10.1210/jc.2011-3428. ; Mojtahedi, Z, Mohmedi, M, Rahimifar, S, Erfani, N, Hosseini, SV, Ghaderi, A. Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with colon cancer. Gene 2012;508:229–32. https://doi.org/10.1016/j.gene.2012.07.059. ; Mojtahedi, Z, Erfani, N, Haghshenas, MR, Hosseini, SV, Ghaderi, A. Association of FoxP3/Scurfin germline polymorphism (C-2383T/rs3761549) with colorectal cancer. Ann Colorectal Res 2013;1:12–6. https://doi.org/10.17795/acr-11478. ; Song, X, Zhong, H, Wu, Q, Wang, M, Zhou, J, Zhou, Y, et al.. Association between SNPs in microRNA machinery genes and gastric cancer susceptibility, invasion, and metastasis in Chinese Han population. Oncotarget 2017;8:86435. https://doi.org/10.18632/oncotarget.21199. ; Erler, P, Keutgen, XM, Crowley, MJ, Zetoune, T, Kundel, A, Kleiman, D, et al.. Dicer expression and microRNA dysregulation associate with aggressive features in thyroid cancer. Surgery 2014;156:1342–50. https://doi.org/10.1016/j.surg.2014.08.007. ; Leaderer, D, Hoffman, AE, Zheng, T, Fu, A, Weidhaas, J, Paranjape, T, et al.. Genetic and epigenetic association studies suggest a role of microRNA biogenesis gene exportin-5 (XPO5) in breast tumorigenesis. Int J Mol Epidemiol Genet 2011;2:9. ; Wen, J, Gao, Q, Wang, N, Zhang, W, Cao, K, Zhang, Q, et al.. Association of microRNA-related gene XPO5 rs11077 polymorphism with susceptibility to thyroid cancer. Medicine (Baltim) 2017;96. https://doi.org/10.1097/md.0000000000006351. ; Tang, R, Yang, C, Ma, X, Wang, Y, Luo, D, Huang, C, et al.. MiR-let-7a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in gastric cancer. Oncotarget 2016;7:5972. https://doi.org/10.18632/oncotarget.6821. ; Pan, W, Wu, C, Su, Z, Duan, Z, Li, L, Mi, F, et al.. Genetic polymorphisms of non-coding RNAs associated with increased head and neck cancer susceptibility: a systematic review and meta-analysis. Oncotarget 2017;8:62508. https://doi.org/10.18632/oncotarget.20096. ; Wang, Y, Wei, T, Xiong, J, Chen, P, Wang, X, Zhang, L, et al.. Association between genetic polymorphisms in the promoter regions of let-7 and risk of papillary thyroid carcinoma: a case-control study. Medicine (Baltim) 2015;94:e1879. doi:https://doi.org/10.1097/md.0000000000001879. ; He, J, Zou, Y, Liu, X, Zhu, J, Zhang, J, Zhang, R, et al.. Association of common genetic variants in pre-microRNAs and neuroblastoma susceptibility: a two-center study in Chinese children. Mol Ther Nucleic Acids 2018;11:1–8. https://doi.org/10.1016/j.omtn.2018.01.003. ; Hashemi, M. MicroRNAs: promising potential targets for cancer treatment. Gene Cell Tissue 2016;3:e42864. doi:https://doi.org/10.17795/gct-42864. ; Chen, P, Sun, R, Pu, Y, Bai, P, Yuan, F, Liang, Y, et al.. Pri-miR-34b/C and Tp-53 polymorphisms are associated with the susceptibility of papillary thyroid carcinoma: a case–control study. Medicine (Baltim) 2015;94. https://doi.org/10.1097/md.0000000000001536. ; Dehghan, R, Hosseinpour Feizi, MA, Pouladi, N, Adampourezare, M, Farajzadeh, D. The TP53 intron 6 G13964C polymorphism and risk of thyroid and breast cancer development in the Iranian Azeri population. Asian Pac J Cancer Prev 2015;16:3073–7. https://doi.org/10.7314/apjcp.2015.16.7.3073. ; Dehghan, R, Hosseinpour Feizi, MA, Pouladi, N, Babaei, E, Montazeri, V, Fakhrjoo, A, et al.. Association of p53 (-16ins-pro) haplotype with the decreased risk of differentiated thyroid carcinoma in Iranian-Azeri patients. Pathol Oncol Res 2015;21:449–54. https://doi.org/10.1007/s12253-014-9846-y. ; Fard-Esfahani, P, Fard-Esfahani, A, Fayaz, S, Ghanbarzadeh, B, Saidi, P, Mohabati, R, et al.. Association of Arg194Trp, Arg280His and Arg399Gln polymorphisms in X-ray repair cross-complementing group 1 gene and risk of differentiated thyroid carcinoma in Iran. Iran Biomed J 2011;15:73–8. ; Fard-Esfahani, P, Fard-Esfahani, A, Saidi, P, Fayaz, S, Mohabati, R, Majdi, M. An increased risk of differentiated thyroid carcinoma in Iran with the 677C -> T homozygous polymorphism in the MTHFR gene. Canc Epidemiol 2011;35:56–8. https://doi.org/10.1016/j.canep.2010.10.001. ; Rahimi, M, Fayaz, S, Fard-Esfahani, A, Modarressi, MH, Akrami, SM, Fard-Esfahani, P. The role of Ile3434Thr XRCC7 gene polymorphism in differentiated thyroid cancer risk in an Iranian population. Iran Biomed J 2012;16:218–22. https://doi.org/10.6091/ibj.1078.2012. ; Yazdani, N, Sayahpour, FA, Haghpanah, V, Amiri, P, Shahrabi-Farahani, M, Moradi, M, et al.. Survivin gene polymorphism association with papillary thyroid carcinoma. Pathol Res Pract 2012;208:100–3. https://doi.org/10.1016/j.prp.2011.12.009. ; Hamta, A, Yousefi, M, FAZELI, MAM, Talaei, A, Sadeghi, A. Lack of association between nodular thyroid disease and rs1256049 polymorphism of estrogen receptor beta gene in women from Markazi povince. J Arak Uni Med Sci 2015;18:85–91. ; Feizi, MAH, Tofigh, R, Pouladi, N, Ravanbakhsh, R, Azarfam, P, Montazeri, V. The study of P53 polymorphism in codon 72 in patients with thyroid cancer in a report from East Azerbaijan province Iran. Med J Tabriz Univ Med Sci Health Serv 2013;35:24–9. ; Rahimi, M, Fard-Esfahani, P, Fayaz, S, Fard-Esfahani, A, Modarressi, MH, Akrami, SM. Analysis of G> A change in splicing site of intron 6 of XRCC4 gene in patients with differentiated thyroid cancer (DTC). Int Sportmed J (ISMJ) 2014;17:542–9. ; Younesi, M, Hosseinpour Feizi, M, Pouladi, N. Evaluating the prevalence of plasminogen activator inhibitor-1 gene polymorphism in patients with thyroid tumors from North West of Iran. J Ilam Univ Med Sci 2017;25:166–72. https://doi.org/10.29252/sjimu.25.2.166. ; Abidi, M, Fayaz, S, Esfahani, PF. Association of the Asp1312Gly thyroglobulin gene polymorphism with susceptibility to differentiated thyroid cancer in an Iranian population. Asian Pac J Cancer Prev APJCP 2017;18:503. https://doi.org/10.22034/APJCP.2017.18.2.503. ; Adampourezare, M, Hosseinpourefeizi, M-A, Pouladi, N, Hosseinpourefeizi, E, Azarfam, P. Association of Arg194Trp and Arg399Gln polymorphisms of XRCC1 gene and risk of differentiated thyroid carcinoma in Iranian-Azeri patients. Int J Canc Manag 2017;10. https://doi.org/10.5812/ijcm.5790. ; Ramezani, M, Hedayati, M, Hoseini Asl, S, Tabatabaei, M, Mazani, M, Nasiri, S. Association of vitamin D levels and receptor gene polymorphisms with medullary thyroid cancer. Tehran Univ Med J TUMS Publ 2016;74:274–81. ; Khanlou, ZM, Pouladi, N, Feizi, MH, Pedram, N. Lack of associations of the MDM4 rs4245739 polymorphism with risk of thyroid cancer among Iranian-Azeri patients: a case-control study. Asian Pac J Cancer Prev APJCP 2017;18:1133. ; Maruei-Milan, R, Heidari, Z, Salimi, S. Role of MDM2 309T>G (rs2279744) and I/D (rs3730485) polymorphisms and haplotypes in risk of papillary thyroid carcinoma, tumor stage, tumor size, and early onset of tumor: a case control study. J Cell Physiol 2019;234:12934–40. https://doi.org/10.1002/jcp.27960. ; Abdolahi, F, Dabbaghmanesh, MH, Haghshenas, MR, Ghaderi, A, Erfani, N. A gene-disease association study of IL18 in thyroid cancer: genotype and haplotype analyses. Endocrine 2015;50:698–707. https://doi.org/10.1007/s12020-015-0623-9. ; Abtahi, S, Jahromi, FI, Dabbaghmanesh, MH, Malekzadeh, M, Ghaderi, A. Association between CTLA-4+ 49A> G and–318C> T single-nucleotide polymorphisms and susceptibility to thyroid neoplasm. Endocrine 2018;62:159–65. https://doi.org/10.1007/s12020-018-1663-8. ; Fayaz, S, Karimmirza, M, Tanhaei, S, Fathi, M, Torbati, PM, Fard-Esfahani, P. Increased risk of differentiated thyroid carcinoma with combined effects of homologous recombination repair gene polymorphisms in an Iranian population. Asian Pac J Cancer Prev APJCP 2013;14:6727–31. https://doi.org/10.7314/apjcp.2013.14.11.6727. ; Haghshenas, M, Dabbaghmanesh, M, Miri, A, Ghaderi, A, Erfani, N. Association of PDCD1 gene markers with susceptibility to thyroid cancer. J Endocrinol Invest 2017;40:481–6. https://doi.org/10.1007/s40618-016-0579-5. ; Heidari, Z, Mohammadpour‐Gharehbagh, A, Eskandari, M, Harati‐Sadegh, M, Salimi, S. Genetic polymorphisms of miRNA let7a‐2 and pri‐mir‐34b/c are associated with an increased risk of papillary thyroid carcinoma and clinical/pathological features. J Cell Biochem 2019;120:8640–7. https://doi.org/10.1002/jcb.28152. ; Mohammadpour-Gharehbagh, A, Heidari, Z, Eskandari, M, Aryan, A, Salimi, S. Association between genetic polymorphisms in microRNA machinery genes and risk of papillary thyroid carcinoma. Pathol Oncol Res 2019:1–7. ; Narooie-Nejad, M, Taji, O, Kordi Tamandani, DM, Kaykhaei, MA. Association of CTLA-4 gene polymorphisms-318C/T and+ 49A/G and Hashimoto’s thyroiditis in Zahedan, Iran. Biomed Rep 2017;6:108–12. https://doi.org/10.3892/br.2016.813. ; Khoshi, A, Sirghani, A, Ghazisaeedi, M, Mahmudabadi, AZ, Azimian, A. Association between TPO Asn698Thr and Thr725Pro gene polymorphisms and serum anti-TPO levels in Iranian patients with subclinical hypothyroidism. Hormones (Basel) 2017;16:75–83. ; Zarrin, R, Bagheri, M, Mehdizadeh, A, Ayremlou, P, Faghfouri, AH. The association of FokI and ApaI polymorphisms in vitamin D receptor gene with autoimmune thyroid diseases in the northwest of Iran. Med J Islam Repub Iran 2018;32:4. https://doi.org/10.14196/mjiri.32.4.
  • Contributed Indexing: Keywords: Iran; biomarker; genotyping; single nucleotide polymorphisms; thyroid cancer
  • Entry Date(s): Date Created: 20210205 Date Completed: 20211228 Latest Revision: 20211228
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -