Zum Hauptinhalt springen

Metabolic Changes in Brain Slices over Time: a Multiplatform Metabolomics Approach.

Gonzalez-Riano, C ; Tapia-González, S ; et al.
In: Molecular neurobiology, Jg. 58 (2021-07-01), Heft 7, S. 3224-3237
Online academicJournal

Titel:
Metabolic Changes in Brain Slices over Time: a Multiplatform Metabolomics Approach.
Autor/in / Beteiligte Person: Gonzalez-Riano, C ; Tapia-González, S ; Perea, G ; González-Arias, C ; DeFelipe, J ; Barbas, C
Link:
Zeitschrift: Molecular neurobiology, Jg. 58 (2021-07-01), Heft 7, S. 3224-3237
Veröffentlichung: Clifton, NJ : Humana Press, c1987-, 2021
Medientyp: academicJournal
ISSN: 1559-1182 (electronic)
DOI: 10.1007/s12035-020-02264-y
Schlagwort:
  • Animals
  • Brain cytology
  • Chromatography, Liquid methods
  • Lipidomics methods
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Organ Culture Techniques methods
  • Time Factors
  • Brain metabolism
  • Gas Chromatography-Mass Spectrometry methods
  • Metabolome physiology
  • Metabolomics methods
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Mol Neurobiol] 2021 Jul; Vol. 58 (7), pp. 3224-3237. <i>Date of Electronic Publication: </i>2021 Mar 02.
  • MeSH Terms: Brain / *metabolism ; Gas Chromatography-Mass Spectrometry / *methods ; Metabolome / *physiology ; Metabolomics / *methods ; Animals ; Brain / cytology ; Chromatography, Liquid / methods ; Lipidomics / methods ; Male ; Mice ; Mice, Inbred C57BL ; Organ Culture Techniques / methods ; Time Factors
  • References: Yamamoto C, McIlwain H (1966) Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem 13(12):1333–1343. (PMID: 5962016) ; Llinas RR (1988) The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. Science 242(4886):1654–1664. (PMID: 3059497) ; Cho S, Wood A, Bowlby M (2007) Brain slices as models for neurodegenerative disease and screening platforms to identify novel therapeutics. Curr Neuropharmacol 5(1):19–33. (PMID: 186151512435340) ; Babiloni C, Blinowska K, Bonanni L, Cichocki A, de Haan W, del Percio C, Dubois B, Escudero J et al (2020) What electrophysiology tells us about Alzheimer's disease: a window into the synchronization and connectivity of brain neurons. Neurobiol Aging 85:58–73. (PMID: 31739167) ; Varela C, Llano DA, Theyel BB (2011) An introduction to in vitro slice approaches for the study of neuronal circuitry. Neuromethods 65:103–1250. ; Steriade M (2003) The corticothalamic system in sleep. Front Biosci 8:d878–d899. (PMID: 12700074) ; Stein LR, Zorumski CF, Izumi Y (2017) Dissection method affects electrophysiological properties of hippocampal slices. Oruen: CNS Jl 3(2):94–101. ; Huang S, Uusisaari MY (2013) Physiological temperature during brain slicing enhances the quality of acute slice preparations. Front Cell Neurosci 7:48. (PMID: 236304653632751) ; Ivanov A, Zilberter Y (2011) Critical state of energy metabolism in brain slices: the principal role of oxygen delivery and energy substrates in shaping neuronal activity. Front Neuroenerg 3:9. ; Siklos L et al (1997) Intracellular calcium redistribution accompanies changes in total tissue Na+, K+ and water during the first two hours of in vitro incubation of hippocampal slices. Neuroscience 79(4):1013–1022. (PMID: 9219964) ; Whittingham TS, Lust WD, Christakis DA, Passonneau JV (1984) Metabolic stability of hippocampal slice preparations during prolonged incubation. J Neurochem 43(3):689–696. (PMID: 6086837) ; Schurr A, Reid KH, Tseng MT, Edmonds HL Jr (1984) The stability of the hippocampal slice preparation: an electrophysiological and ultrastructural analysis. Brain Res 297(2):357–362. (PMID: 6326943) ; Kirov SA, Petrak LJ, Fiala JC, Harris KM (2004) Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus. Neuroscience 127(1):69–80. (PMID: 15219670) ; Trivino-Paredes JS, Nahirney PC, Pinar C, Grandes P, Christie BR (2019) Acute slice preparation for electrophysiology increases spine numbers equivalently in the male and female juvenile hippocampus: a DiI labeling study. J Neurophysiol 122(3):958–969. (PMID: 312688086766732) ; Fiala JC, Kirov SA, Feinberg MD, Petrak LJ, George P, Goddard CA, Harris KM (2003) Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro. J Comp Neurol 465(1):90–103. (PMID: 12926018) ; Buskila Y et al (2014) Extending the viability of acute brain slices. Sci Rep 4:5309. (PMID: 249308894058870) ; Grøndahl TØ, Langmoen IA (1993) Epileptogenic effect of antibiotic drugs. J Neurosurg 78(6):938–943. (PMID: 8487076) ; Hertz L (2012) Metabolic studies in brain slices–past, present, and future. Front Pharmacol 3:26. (PMID: 224086193297831) ; Ting JT, Lee BR, Chong P, Soler-Llavina G, Cobbs C, Koch C, Zeng H, Lein E (2018) Preparation of acute brain slices using an optimized N-methyl-D-glucamine protective recovery method. J Vis Exp (132):53825. https://doi.org/10.3791/53825. ; Gonzalez-Riano C, Tapia-González S, García A, Muñoz A, DeFelipe J, Barbas C (2017) Metabolomics and neuroanatomical evaluation of post-mortem changes in the hippocampus. Brain Struct and Funct 222(6):2831–2853. ; Gonzalez-Riano C, León-Espinosa G, Regalado-Reyes M, García A, DeFelipe J, Barbas C (2019) Metabolomic study of hibernating syrian hamster brains: in search of neuroprotective agents. J Proteome Res 18(3):1175–1190. (PMID: 30623656) ; Dudzik D, Barbas-Bernardos C, García A, Barbas C (2017). Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J Pharm Biomed Anal 147:149–173. ; Si-Hung L, Causon TJ, Hann S (2017) Comparison of fully wettable RPLC stationary phases for LC-MS-based cellular metabolomics. Electrophoresis 38(18):2287–2295. (PMID: 28691762) ; Kuligowski J, Sánchez-Illana Á, Sanjuán-Herráez D, Vento M, Quintás G (2015) Intra-batch effect correction in liquid chromatography-mass spectrometry using quality control samples and support vector regression (QC-SVRC). Analyst 140(22):7810–7817. (PMID: 26462549) ; de la Fuente AG et al (2018) Knowledge-based metabolite annotation tool: CEU mass mediator. J Pharm Biomed Anal 154:138–149. ; Gil-De-La-Fuente A et al (2019) CEU mass mediator 3.0: a metabolite annotation tool. J Proteome Res 18(2):797–802. (PMID: 30574788) ; Han X (2016) Lipidomics: Comprehensive mass spectrometry of lipids. John Wiley & Sons Inc., Hoboken, New Jersey. ; Tsugawa H, Ikeda K, Takahashi M, Satoh A, Mori Y, Uchino H, Okahashi N, Yamada Y, Tada I, Bonini P et al (2020) MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. https://doi.org/10.1101/2020.02.11.944900. ; Mohamed A, Molendijk J, Hill MM (2020) lipidr: a software tool for data mining and analysis of lipidomics datasets. J Proteome Res 19:2890–2897. (PMID: 32168452) ; Santello M, Toni N, Volterra A (2019) Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci 22(2):154–166. (PMID: 30664773) ; Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32(8):421–431. (PMID: 19615761) ; Czéh B, Varga ZKK, Henningsen K, Kovács GL, Miseta A, Wiborg O (2015) Chronic stress reduces the number of GABAergic interneurons in the adult rat hippocampus, dorsal-ventral and region-specific differences. Hippocampus 25(3):393–405. (PMID: 25331166) ; Roth FC, Draguhn A (2012) GABA metabolism and transport: effects on synaptic efficacy. Neural Plast 2012:1–12. ; Molnár E (2016) Investigation of neurotransmitter receptors in brain slices using cell surface biotinylation. In: Luján R, Ciruela F (Eds). Receptor and Ion Channel Detection in the Brain. Neuromethods, Humana Press, New York, pp 39-48. ; Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473. (PMID: 20559335) ; Zhang Y, Cudmore RH, Lin DT, Linden DJ, Huganir RL (2015) Visualization of NMDA receptor–dependent AMPA receptor synaptic plasticity in vivo. Nat Neurosci 18(3):402–407. (PMID: 256432954339371) ; Facecchia K, Fochesato LA, Ray SD, Stohs SJ, Pandey S (2011) Oxidative toxicity in neurodegenerative diseases: role of mitochondrial dysfunction and therapeutic strategies. J Toxicol 2011:1–12. ; Mederos S, González-Arias C, Perea G (2018) Astrocyte–neuron networks: a multilane highway of signaling for homeostatic brain function. Front Synaptic Neurosci 10:45. (PMID: 305422766277918) ; Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP (2010) The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58(9):1094–1103. (PMID: 20468051) ; Deitmer JW, Theparambil SM, Ruminot I, Noor SI, Becker HM (2019) Energy dynamics in the brain: contributions of astrocytes to metabolism and pH homeostasis. Front Neurosci 13:1301. (PMID: 318668116909239) ; Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, Lauritzen M (2008) Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol 586(5):1337–1349. (PMID: 181874642375663) ; Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond B Biol Sci 354(1387):1155–1163. (PMID: 104661431692634) ; Gallagher CN, Carpenter KLH, Grice P, Howe DJ, Mason A, Timofeev I, Menon DK, Kirkpatrick PJ et al (2009) The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain 132(10):2839–2849. (PMID: 19700417) ; Dienel GA (2019) Brain glucose metabolism: integration of energetics with function. Physiol Rev 99(1):949–1045. (PMID: 30565508) ; Dienel GA (2013) Astrocytic energetics during excitatory neurotransmission: what are contributions of glutamate oxidation and glycolysis? Neurochem Int 63(4):244–258. (PMID: 238382113771699) ; Bergles DE, Jahr CE (1997) Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19(6):1297–1308. (PMID: 9427252) ; Spanaki C, Plaitakis A (2012) The role of glutamate dehydrogenase in mammalian ammonia metabolism. Neurotox Res 21(1):117–127. (PMID: 22038055) ; Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161(2):303–310. (PMID: 31966) ; Schousboe A (1981) Transport and metabolism of glutamate and GABA in neurons and glial cells. In Int Rev Neurobiol 22:1–45. ; Schousboe A et al (2013) Astrocytic control of biosynthesis and turnover of the neurotransmitters glutamate and GABA. Front Endocrinol 4:102. ; Hussain G, Wang J, Rasul A, Anwar H, Imran A, Qasim M, Zafar S, Kamran SKS et al (2019) Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis 18(1):26. (PMID: 306831116347843) ; Buskila Y, Bellot-Saez A, Kékesi O, Cameron M, Morley J (2020) Extending the life span of acute neuronal tissue for imaging and electrophysiological studies. In: Wright N (ed.) Basic Neurobiology Techniques, Neuromethods. Humana, New York,  pp 235–259. ; Wolosker H, Blackshaw S, Snyder SH (1999) Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci 96(23):13409–13414. (PMID: 1055733423961) ; Coyle JT, Balu D, Wolosker H (2020) D-serine, the shape-shifting NMDA receptor co-agonist. Neurochem Res 45(6):1344–1353. ; Rapoport SI (2008) Arachidonic acid and the brain. J Nutr 138(12):2515–2520. (PMID: 190229813415870) ; Attwell D, Miller B, Sarantis M (1993) Arachidonic acid as a messenger in the central nervous system. Sem Neurosci 5(3):159–169. ; Leaf A (2001) The electrophysiologic basis for the antiarrhythmic and anticonvulsant effects of n − 3 polyunsaturated fatty acids: Heart and brain. Lipids 36(1):S107–S110. (PMID: 11837982) ; Voskuyl RA, Vreugdenhil M, Kang JX, Leaf A (1998) Anticonvulsant effect of polyunsaturated fatty acids in rats, using the cortical stimulation model. Eur J Pharmacol 341(2-3):145–152. (PMID: 9543232) ; Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7:52. (PMID: 259541944404917) ; Cravatt BF et al (1995) Chemical characterization of a family of brain lipids that induce sleep. Science 268(5216):1506–1509. (PMID: 7770779) ; Hiley CR, Hoi PM (2007) Oleamide: a fatty acid amide signaling molecule in the cardiovascular system? Cardiovasc Drug Rev 25(1):46–60. (PMID: 17445087)
  • Grant Information: S2017/BMD3684 FEDER program; CB06/05/0066 Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (ES); PGC2018-094307-B-I00 Ministerio de Ciencia, Innovación y Universidades; RTI2018-095166-B-I00 Ministerio de Ciencia, Innovación y Universidades; BFU2016-75107-P MINECO; BES-2017-080303 MINECO; PID2019-106579RB-I00 MINECO; 2019AEP152 CSIC PIE
  • Contributed Indexing: Keywords: Brain slice; Electrophysiology; Lipidomics; Mass-spectrometry; Metabolomics; Stability
  • Entry Date(s): Date Created: 20210302 Date Completed: 20211209 Latest Revision: 20211214
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -