Zum Hauptinhalt springen

Association Between Vertebral Dimensions and Lumbar Modic Changes.

Julin, M ; Saukkonen, J ; et al.
In: Spine, Jg. 46 (2021-04-01), Heft 7, S. E415-E425
Online academicJournal

Titel:
Association Between Vertebral Dimensions and Lumbar Modic Changes.
Autor/in / Beteiligte Person: Julin, M ; Saukkonen, J ; Oura, P ; Junno, JA ; Niemelä, M ; Määttä, J ; Niinimäki, J ; Jämsä, T ; Korpelainen, R ; Karppinen, J
Link:
Zeitschrift: Spine, Jg. 46 (2021-04-01), Heft 7, S. E415-E425
Veröffentlichung: Hagerstown, MD : Lippincott Williams & Wilkins ; <i>Original Publication</i>: Hagerstown, Md., Medical Dept., Harper & Row., 2021
Medientyp: academicJournal
ISSN: 1528-1159 (electronic)
DOI: 10.1097/BRS.0000000000003797
Schlagwort:
  • Adult
  • Cohort Studies
  • Disabled Persons
  • Female
  • Finland epidemiology
  • Humans
  • Male
  • Middle Aged
  • Risk Factors
  • Low Back Pain diagnostic imaging
  • Low Back Pain epidemiology
  • Lumbar Vertebrae diagnostic imaging
  • Magnetic Resonance Imaging trends
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Spine (Phila Pa 1976)] 2021 Apr 01; Vol. 46 (7), pp. E415-E425.
  • MeSH Terms: Low Back Pain / *diagnostic imaging ; Low Back Pain / *epidemiology ; Lumbar Vertebrae / *diagnostic imaging ; Magnetic Resonance Imaging / *trends ; Adult ; Cohort Studies ; Disabled Persons ; Female ; Finland / epidemiology ; Humans ; Male ; Middle Aged ; Risk Factors
  • References: Hartvigsen J, Hancock MJ, Kongsted A, et al. What low back pain is and why we need to pay attention. Lancet 2018; 391:2356–2367. ; GBD 2017 Disease and Injury Incidence and Prevalance Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017 [published correction appears in Lancet. 2019 Jun 22;393(10190):e44]. Lancet 2018; 392:1789–1858. ; Maher C, Underwood M, Buchbinder R. Non-specific low back pain. Lancet 2017; 389:736–747. ; Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388:1545–1602. ; de Roos A, Kressel H, Spritzer C, et al. MR imaging of marrow changes adjacent to end plate in degenerative lumbar disc disease. Am J Roentgenol 1987; 149:531–534. ; Modic MT, Steinberg PM, Ross JS, et al. Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 1988; 166:193–199. ; Modic MT, Masaryk TJ, Ross JS, et al. Imaging of degenerative disk disease. Radiology 1988; 168:177–186. ; Brinjikji W, Diehn FE, Jarvik JG, et al. MRI findings of disc degeneration are more prevalent in adults with low back pain than in asymptomatic controls: a systematic review and meta-analysis. AJNR Am J Neuroradiol 2015; 36:2394–2399. ; Kjaer P, Korsholm L, Bendix T, et al. Modic changes and their associations with clinical findings. Eur Spine J 2006; 15:1312–1319. ; Kuisma M, Karppinen J, Niinimäki J, et al. Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine (Phila Pa 1976) 2007; 32:1116–1122. ; Saukkonen J, Määttä J, Oura P, et al. Association between Modic changes and low back pain in middle age: A Northern Finland Birth Cohort Study [published online ahead of print Apr 23]. Spine (Phila Pa 1976) 2020; 45:1360–1367. ; Jensen TS, Karppinen J, Sorensen JS, et al. Vertebral endplate signal changes (Modic change): a systematic literature review of prevalence and association with non-specific low back pain. Eur Spine J 2008; 17:1407–1422. ; Albert HB, Kjaer P, Jensen TS, et al. Modic changes, possible causes and relation to low back pain. Med Hypotheses 2008; 70:361–368. ; Herlin C, Kjaer P, Espeland A, et al. Modic changes—their associations with low back pain and activity limitation: a systematic literature review and meta-analysis. PLoS One 2018; 13:e0200677. ; Määttä JH, Karppinen J, Paananen M, et al. Refined phenotyping of Modic changes: imaging biomarkers of prolonged severe low back pain and disability. Medicine 2016; 95:e3495. ; Dudli S, Fields AJ, Samartzis D, et al. Pathobiology of Modic changes. Eur Spine J 2016; 25:3723–3734. ; Määttä JH, Rade M, Freidin MB, et al. Strong association between vertebral endplate defect and Modic change in the general population. Sci Rep 2018; 8:16630. ; Farshad-Amacker NA, Hughes A, Herzog RJ, et al. The intervertebral disc, the endplates and the vertebral bone marrow as a unit in the process of degeneration. Eur Radiol 2017; 27:2507–2520. ; Kuisma M, Karppinen J, Niinimäki J, et al. A three-year follow-up of lumbar spine endplate (Modic) changes. Spine (Phila Pa 1976) 2006; 31:1714–1718. ; Jensen TS, Kjaer P, Korsholm L, et al. Predictors of new vertebral endplate signal (Modic) changes in the general population. Eur Spine J 2010; 19:129–135. ; Määttä JH, Karppinen JI, Luk KD, et al. Phenotype profiling of Modic changes of the lumbar spine and its association with other MRI phenotypes: a large-scale population-based study. Spine J 2015; 15:1933–1942. ; Zehra U, Cheung JPY, Bow C, et al. Multidimensional vertebral endplate defects are associated with disc degeneration, modic changes, facet joint abnormalities, and pain. J Orthop Res 2019; 37:1080–1089. ; Luoma K, Vehmas T, Kerttula L, et al. Chronic low back pain in relation to Modic changes, bony endplate lesions, and disc degeneration in a prospective MRI study. Eur Spine J 2016; 25:2873–2881. ; Jensen OK, Nielsen CV, Sørensen JS, et al. Type 1 Modic changes was a significant risk factor for 1-year outcome in sick-listed low back pain patients: a nested cohort study using magnetic resonance imaging of the lumbar spine. Spine J 2014; 14:2568–2581. ; Järvinen J, Karppinen J, Niinimäki J, et al. Association between changes in lumbar Modic changes and low back symptoms over a two-year period. BMC Musculoskelet Disord 2015; 16:98. ; Bielemann RM, Martinez-Mesa J, Gigante DP. Physical activity during life course and bone mass: a systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet Disord 2013; 14:77. ; Gunter KB, Almstedt HC, Janz KF. Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exerc Sport Sci Rev 2012; 40:13–21. ; Nikander R, Sievänen H, Heinonen A, et al. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med 2010; 8:47. ; Strope MA, Nigh P, Carter MI, et al. Physical activity-associated bone loading during adolescence and young adulthood is positively associated with adult bone mineral density in men. Am J Mens Health 2015; 9:442–450. ; Wallace BA, Cumming RG. Systematic review of randomized trials of the effect of exercise on bone mass in pre- and postmenopausal women. Calcif Tissue Int 2000; 67:10–18. ; Barry DW, Kohrt WM. Exercise and the preservation of bone health. J Cardiopulm Rehabil Prev 2008; 28:153–162. ; Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc 1998; 30:777–781. ; Guthold R, Stevens GA, Riley LM, et al. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1·9 million participants [published correction appears in Lancet Glob Health. 2019 Jan;7(1):e36]. Lancet Glob Health 2018; 6:e1077–e1086. ; Global action plan on physical activity 2030 more active people for a healthier world. 2018; Geneva: World Health Organization, Licence: CC BY-NC-SA 3.0 IGO. ; Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res 2001; 16:2276–2283. ; Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prep∗∗ubescent children: a randomized controlled trial. J Bone Miner Res 2001; 16:148–156. ; Ito M, Nakamura T, Ikeda S, et al. Effects of lifetime volleyball exercise on bone mineral densities in lumbar spine, calcaneus and tibia for pre-, peri- and postmenopausal women. Osteoporos Int 2001; 12:104–111. ; Kelley GA, Kelley KS, Tran ZV. Exercise and bone mineral density in men: a meta-analysis. J Appl Physiol 2000; 88:1730–1736. ; Martyn-St James M, Carroll S. Progressive high-intensity resistance training and bone mineral density changes among premenopausal women: evidence of discordant site-specific skeletal effects. Sports Med 2006; 36:683–704. ; Mosekilde L, Mosekilde L. Sex differences in age-related changes in vertebral body size, density and biomechanical competence in normal individuals. Bone 1990; 11:67–73. ; Mosekilde L. Age-related changes in bone mass, structure, and strength--effects of loading. Z Rheumatol 2000; 59:1–9. ; Riggs BL, Melton Iii LJ 3rd, Robb RA, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 2004; 19:1945–1954. ; Ward KA, Roberts SA, Adams JE, et al. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone 2005; 36:1012–1018. ; Wolff I, van Croonenborg JJ, Kemper HC, et al. The effect of exercise training programs on bone mass: a meta-analysis of published controlled trials in pre- and postmenopausal women. Osteoporos Int 1999; 9:1–12. ; Oura P, Paananen M, Niinimäki J, et al. Effects of leisure-time physical activity on vertebral dimensions in the Northern Finland Birth Cohort. Sci Rep 2016; 6:27844. ; Oura P, Paananen M, Niinimäki J, et al. High-impact exercise in adulthood and vertebral dimensions in midlife—the Northern Finland Birth Cohort 1966 study. BMC Musculoskelet Disord 2017; 18:433. ; Modarress-Sadeghi M, Oura P, Junno JA, et al. Objectively measured physical activity is associated with vertebral size in midlife. Med Sci Sports Exerc 2019; 51:1606–1612. ; Bouxsein M, Karasik D. Bone geometry and skeletal fragility. Curr Osteoporos Rep 2006; 4:49–56. ; Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol 2008; 3 suppl: (suppl 3): S131–S139. ; Kuisma M, Karppinen J, Haapea M, et al. Are the determinants of vertebral endplate changes and severe disc degeneration in the lumbar spine the same? A magnetic resonance imaging study in middle-aged male workers. BMC Musculoskelet Disord 2008; 9:51. ; Karppinen J, Solovieva S, Luoma K, et al. Modic changes and interleukin 1 gene locus polymorphisms in occupational cohort of middle aged men. Eur Spine J 2009; 18:1963–1970. ; Modarress Julin M, Saukkonen J, Oura P, et al. Association between device-measured physical activity and lumbar Modic changes. BMC Musculoskelet Disord 2020; 21:630. ; Ruyssen-Witrand A, Gossec L, Kolta S, et al. Vertebral dimensions as risk factor of vertebral fracture in osteoporotic patients: a systematic literature review. Osteoporos Int 2007; 18:1271–1278. ; Videman T, Battié MC, Gibbons LE, et al. Aging changes in lumbar discs and vertebrae and their interaction: a 15-year follow-up study. Spine J 2014; 14:469–478. ; Mok FP, Samartzis D, Karppinen J, et al. Modic changes of the lumbar spine: prevalence, risk factors, and association with disc degeneration and low back pain in a large-scale population-based cohort. Spine J 2016; 16:32–41. ; Munir S, Freidin MB, Rade M, et al. Endplate defect is heritable, associated with low back pain and triggers intervertebral disc degeneration: a longitudinal study from TwinsUK. Spine (Phila Pa 1976) 2018; 43:1496–1501. ; University of Oulu. Northern Finland Cohorts, available at: http://www.oulu.fi/nfbc/ (2020, accessed February 24, 2020). ; Rantakallio P. The longitudinal study of the Northern Finland birth cohort. Paediatr Perinat Epidemiol 1988; 2:59–88. ; Slootmaker SM, Schuit AJ, Chinapaw MJ, et al. Disagreement in physical activity assessed by accelerometer and self-report in subgroups of age, gender, education and weight status. Int J Behav Nutr Phys Act 2009; 25:17. ; Cain KL, Sallis JF, Conway TL, et al. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health 2013; 10:437–450. ; Schaefer SE, Van Loan M, German JB. A feasibility study of wearable activity monitors for pre-adolescent school-age children. Prev Chronic Dis 2014; 11:E85. ; Kinnunen H, Tanskanen M, Kyröläinen H, et al. Wrist-worn accelerometers in assessment of energy expenditure during intensive training. Physiol Meas 2012; 33:1841–1854. ; Jauho AM, Pyky R, Ahola R, et al. Effect of wrist-worn activity monitor feedback on physical activity behavior: a randomized controlled trial in Finnish young men. Prev Med Rep 2015; 22:628–634. ; Brugniaux JV, Niva A, Pulkkinen I, et al. Polar Activity Watch 200: a new device to accurately assess energy expenditure. Br J Sports Med 2010; 44:245–249. ; Niemelä MS, Kangas M, Ahola RJ, et al. Dose-response relation of self-reported and accelerometer-measured physical activity to perceived health in middle age-the Northern Finland Birth Cohort 1966 Study. BMC Public Health 2019; 19:21. ; Brinckmann P, Biggemann M, Hilweg D. Prediction of the compressive strength of human lumbar vertebrae. Spine (Phila Pa 1976) 1989; 14:606–610. ; Kiefer A, Shirazi-Adl A, Parnianpour M. Stability of the human spine in neutral postures. Eur Spine J 1997; 6:45–53. ; Adams MA, Roughley PJ. What is intervertebral disc degeneration, and what causes it? Spine (Phila Pa 1976) 2006; 31:2151–2161. ; Lotz JC, Fields AJ, Liebenberg EC. The role of the vertebral end plate in low back pain. Global Spine J 2013; 3:153–164. ; Rade M, Määttä JH, Freidin MB, et al. Vertebral endplate defect as initiating factor in intervertebral disc degeneration: strong association between endplate defect and disc degeneration in the general population. Spine (Phila Pa 1976) 2018; 43:412–419. ; Holm S, Holm AK, Ekström L, et al. Experimental disc degeneration due to endplate injury. J Spinal Disord Tech 2004; 17:64–71. ; Dolan P, Luo J, Pollintine P, et al. Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine (Phila Pa 1976) 2013; 38:1473–1481. ; Zehra U, Flower L, Robson-Brown K, et al. Efects of the vertebral end plate: implications for disc degeneration depend on size. Spine J 2017; 17:727–737. ; Zehra U, Robson-Brown K, Adams MA, et al. Porosity and Thickness of the Vertebral Endplate Depend on Local Mechanical Loading. Spine (Phila Pa 1976) 2015; 40:1173–1180. ; Lama P, Zehra U, Balkovec C, et al. Significance of cartilage endplate within herniated disc tissue. Eur Spine J 2014; 23:1869–1877. ; Stirling A, Worthington T, Rafiq M, et al. Association between sciatica and Propionibacterium acnes. Lancet 2001; 357:2024–2025. ; Oura P. Search for lifetime determinants of midlife vertebral size: Emphasis on lifetime physical activity and early-life physical growth. Acta Universitatis Ouluensis 2017; 1418:116.
  • Entry Date(s): Date Created: 20210311 Date Completed: 20210512 Latest Revision: 20230830
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -