Zum Hauptinhalt springen

Quantitative dual contrast photon-counting computed tomography for assessment of articular cartilage health.

Paakkari, P ; Inkinen, SI ; et al.
In: Scientific reports, Jg. 11 (2021-03-10), Heft 1, S. 5556
Online academicJournal

Titel:
Quantitative dual contrast photon-counting computed tomography for assessment of articular cartilage health.
Autor/in / Beteiligte Person: Paakkari, P ; Inkinen, SI ; Honkanen, MKM ; Prakash, M ; Shaikh, R ; Nieminen, MT ; Grinstaff, MW ; Mäkelä, JTA ; Töyräs, J ; Honkanen, JTJ
Link:
Zeitschrift: Scientific reports, Jg. 11 (2021-03-10), Heft 1, S. 5556
Veröffentlichung: London : Nature Publishing Group, copyright 2011-, 2021
Medientyp: academicJournal
ISSN: 2045-2322 (electronic)
DOI: 10.1038/s41598-021-84800-x
Schlagwort:
  • Aged
  • Female
  • Humans
  • Male
  • Radiographic Image Enhancement
  • Cartilage, Articular diagnostic imaging
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Comparative Study; Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Sci Rep] 2021 Mar 10; Vol. 11 (1), pp. 5556. <i>Date of Electronic Publication: </i>2021 Mar 10.
  • MeSH Terms: Cartilage, Articular / *diagnostic imaging ; Aged ; Female ; Humans ; Male ; Radiographic Image Enhancement
  • References: Fox, A. J. S., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition, and function. Sports Health 1, 461–468 (2009). (PMID: 10.1177/1941738109350438) ; Hunziker, E. B., Quinn, T. M. & Hauselmann, H.-J. Quantitative structural organization of normal adult human articular cartilage. Osteoarthr. Cartil. 10, 564–572 (2002). (PMID: 10.1053/joca.2002.0814) ; Carbone, A. & Rodeo, S. Review of current understanding of post-traumatic osteoarthritis resulting from sports injuries. J. Orthop. Res. 35, 397–405 (2017). (PMID: 2730686710.1002/jor.23341) ; Calders, P. & Van Ginckel, A. Presence of comorbidities and prognosis of clinical symptoms in knee and/or hip osteoarthritis: a systematic review and meta-analysis. Semin. Arthritis Rheum. 47, 805–813 (2018). (PMID: 2915767010.1016/j.semarthrit.2017.10.016) ; Hosseininia, S., Lindberg, L. R. & Dahlberg, L. E. Cartilage collagen damage in hip osteoarthritis similar to that seen in knee osteoarthritis; a case-control study of relationship between collagen, glycosaminoglycan and cartilage swelling. BMC Musculoskelet. Disord. 14, 1–7 (2013). (PMID: 10.1186/1471-2474-14-18) ; Andriacchi, T. P. et al. A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann. Biomed. Eng. 32, 447–457 (2004). (PMID: 1509581910.1023/B:ABME.0000017541.82498.37) ; Anderson, D. D. et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention. J. Orthop. Res. 29, 802–809 (2011). (PMID: 21520254308294010.1002/jor.21359) ; Grodzinsky, A. J., Wang, Y., Kakar, S., Vrahas, M. S. & Evans, C. H. Intra-articular dexamethasone to inhibit the development of post-traumatic osteoarthritis. J. Orthop. Res. 35, 406–411 (2017). (PMID: 27176565560432510.1002/jor.23295) ; Moatshe, G. et al. High prevalence of knee osteoarthritis at a minimum 10-year follow-up after knee dislocation surgery. Knee Surg. Sports Traumatol. Arthrosc. 25, 3914–3922 (2017). (PMID: 2828090710.1007/s00167-017-4443-8) ; Stewart, R. C. et al. Contrast-enhanced computed tomography enables quantitative evaluation of tissue properties at intrajoint regions in cadaveric knee cartilage. Cartilage 8, 391–399 (2017). (PMID: 2893488310.1177/1947603516665443) ; Palmer, A. W., Guldberg, R. E. & Levenston, M. E. Analysis of cartilage matrix fixed charge density and three-dimensional morphology via contrast-enhanced microcomputed tomography. Proc. Natl. Acad. Sci. USA 103, 19255–19260 (2006). (PMID: 1715879910.1073/pnas.06064061031748213) ; Bansal, P. N., Joshi, N. S., Entezari, V., Grinstaff, M. W. & Snyder, B. D. Contrast enhanced computed tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage. Osteoarthr. Cartil. 18, 184–191 (2010). (PMID: 10.1016/j.joca.2009.09.003) ; Lusic, H. & Grinstaff, M. W. X-ray-computed tomography contrast agents. Chem. Rev. 113, 1641–1666 (2013). (PMID: 2321083610.1021/cr200358s) ; Kokkonen, H. T., Chin, H. C., Toyras, J., Jurvelin, J. S. & Quinn, T. M. Solute transport of negatively charged contrast agents across articular surface of injured cartilage. Ann. Biomed. Eng. 45, 973–981 (2017). (PMID: 2782667310.1007/s10439-016-1756-6) ; Bansal, P. N. et al. Cationic contrast agents improve quantification of glycosaminoglycan (GAG) content by contrast enhanced CT imaging of cartilage. J. Orthop. Res. 29, 704–709 (2011). (PMID: 2143794910.1002/jor.21312) ; Bansal, P. N., Stewart, R. C., Entezari, V., Snyder, B. D. & Grinstaff, M. W. Contrast agent electrostatic attraction rather than repulsion to glycosaminoglycans affords a greater contrast uptake ratio and improved quantitative CT imaging in cartilage. Osteoarthr. Cartil. 19, 970–976 (2011). (PMID: 10.1016/j.joca.2011.04.004) ; Joshi, N. S., Bansal, P. N., Stewart, R. C., Snyder, B. D. & Grinstaff, M. W. Effect of contrast agent charge on visualization of articular cartilage using computed tomography: exploiting electrostatic interactions for improved sensitivity. J. Am. Chem. Soc. 131, 13234–13235 (2009). (PMID: 1975418310.1021/ja9053306) ; Bhattarai, A. et al. Quantitative dual contrast CT technique for evaluation of articular cartilage properties. Ann. Biomed. Eng. 46, 1038–1046 (2018). (PMID: 2965438410.1007/s10439-018-2013-y) ; Honkanen, M. K. M. et al. Imaging of proteoglycan and water contents in human articular cartilage with full-body CT using dual contrast technique. J. Orthop. Res. 37, 1059–1070 (2019). (PMID: 30816584659407010.1002/jor.24256) ; Saukko, A. E. A. et al. Simultaneous quantitation of cationic and non-ionic contrast agents in articular cartilage using synchrotron microCT imaging. Sci. Rep. 9, 7118 (2019). (PMID: 31068614650650310.1038/s41598-019-43276-6) ; Honkanen, M. K. M. et al. Synchrotron microCT reveals the potential of the dual contrast technique for quantitative assessment of human articular cartilage composition. J. Orthop. Res. 38, 563–573 (2020). (PMID: 3153572810.1002/jor.24479) ; McCollough, C. H., Leng, S., Yu, L. & Fletcher, J. G. Dual- and multi-energy CT: principles, technical approaches, and clinical applications. Radiology 276, 637–653 (2015). (PMID: 2630238810.1148/radiol.2015142631) ; Papadakis, A. E. & Damilakis, J. Fast kVp-switching dual energy contrast-enhanced thorax and cardiac CT: a phantom study on the accuracy of iodine concentration and effective atomic number measurement. Med. Phys. 44, 4724–4735 (2017). (PMID: 2865850510.1002/mp.12437) ; Lenga, L. et al. Comparison of radiation dose and image quality of contrast-enhanced dual-source CT of the chest: single-versus dual-energy and second-versus third-generation technology. AJR. Am. J. Roentgenol. 212, 741–747 (2019). (PMID: 3069900610.2214/AJR.18.20065) ; Gutjahr, R. et al. Human imaging with photon counting-based computed tomography at clinical dose levels: contrast-to-noise ratio and cadaver studies. Invest. Radiol. 51, 421–429 (2016). (PMID: 26818529489918110.1097/RLI.0000000000000251) ; Yu, Z. et al. Noise performance of low-dose CT: comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J. Med. Imaging 3, 1–6 (2016). (PMID: 10.1117/1.JMI.3.4.043503) ; Kalender, W. A., Klotz, E. & Kostaridou, L. An algorithm for noise suppression in dual energy CT material density images. IEEE Trans. Med. Imaging 7, 218–224 (1988). (PMID: 1823047210.1109/42.7785) ; Muenzel, D. et al. Spectral photon-counting CT: initial experience with dual-contrast agent K-edge colonography. Radiology 283, 723–728 (2017). (PMID: 2791870910.1148/radiol.2016160890) ; Muenzel, D. et al. Simultaneous dual-contrast multi-phase liver imaging using spectral photon-counting computed tomography: a proof-of-concept study. Eur. Radiol. Exp. 1, 25 (2017). (PMID: 29708205590936610.1186/s41747-017-0030-5) ; Si-Mohamed, S. et al. Spectral photon-counting computed tomography (SPCCT): in-vivo single-acquisition multi-phase liver imaging with a dual contrast agent protocol. Sci. Rep. 9, 8458 (2019). (PMID: 31186467655995810.1038/s41598-019-44821-z) ; Symons, R. et al. Dual-contrast agent photon-counting computed tomography of the heart: initial experience. Int. J. Cardiovasc. Imaging 33, 1253–1261 (2017). (PMID: 2828999010.1007/s10554-017-1104-4) ; Rajendran, K. et al. Quantitative knee arthrography in a large animal model of osteoarthritis using photon-counting detector CT. Invest. Radiol. 00, 0–7 (2020). ; Prakash, M. Optimization of multivariate regression techniques for near-infrared spectroscopic characterization of articular cartilage (University of Eastern Finland, 2019). ; Prakash, M. et al. Near-infrared spectroscopy enables quantitative evaluation of human cartilage biomechanical properties during arthroscopy. Osteoarthr. Cartil. 27, 1235–1243 (2019). (PMID: 10.1016/j.joca.2019.04.008) ; Hayes, W. C., Keer, L. M., Herrmann, G. & Mockros, L. F. A mathematical analysis for indentation tests of articular cartilage. J. Biomech. 5, 541–551 (1972). (PMID: 466727710.1016/0021-9290(72)90010-3) ; Kiviranta, P. et al. Collagen network primarily controls Poisson’s ratio of bovine articular cartilage in compression. J. Orthop. Res. 24, 690–699 (2006). (PMID: 1651466110.1002/jor.20107) ; Arbabi, V., Pouran, B., Weinans, H. & Zadpoor, A. A. Neutral solute transport across osteochondral interface: a finite element approach. J. Biomech. 49, 3833–3839 (2016). (PMID: 2779340610.1016/j.jbiomech.2016.10.015) ; Kiviranta, I., Jurvelin, J., Tammi, M., Saamanen, A. M. & Helminen, H. J. Microspectrophotometric quantitation of glycosaminoglycans in articular cartilage sections stained with Safranin O. Histochemistry 82, 249–255 (1985). (PMID: 258192310.1007/BF00501401) ; van der Sluijs, J. A. et al. The reliability of the Mankin score for osteoarthritis. J. Orthop. Res. 10, 58–61 (1992). (PMID: 172793610.1002/jor.1100100107) ; Juntunen, M. A. K. et al. Framework for photon counting quantitative material decomposition. IEEE Trans. Med. Imaging 39, 35–47 (2020). (PMID: 3114463010.1109/TMI.2019.2914370) ; Jakubek, J., Vavrik, D., Pospisil, S. & Uher, J. Quality of X-ray transmission radiography based on single photon counting pixel device. . Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 546, 113–117 (2005). (PMID: 10.1016/j.nima.2005.03.045) ; Münch, B., Trtik, P., Marone, F. & Stampanoni, M. Stripe and ring artifact removal with combined wavelet—Fourier filtering. Opt. Express 17, 1844–1856 (2009). (PMID: 10.1364/OE.17.008567) ; van Aarle, W. et al. The ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultramicroscopy 157, 35–47 (2015). (PMID: 2605768810.1016/j.ultramic.2015.05.002) ; Klein, R. Bland–Altman and correlation plot. MATLAB Central File Exchange (2018). Available at: https://www.mathworks.com/matlabcentral/fileexchange/45049-bland-altman-and-correlation-plot (Accessed 17th April 2019). ; Saarakkala, S. et al. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthr. Cartil. 18, 73–81 (2010). (PMID: 10.1016/j.joca.2009.08.003) ; Franz, T. et al. In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint. Osteoarthr. Cartil. 9, 582–592 (2001). (PMID: 10.1053/joca.2001.0418) ; Chen, X. et al. Determining tension-compression nonlinear mechanical properties of articular cartilage from indentation testing. Ann. Biomed. Eng. 44, 1148–1158 (2016). (PMID: 2624006210.1007/s10439-015-1402-8) ; Korhonen, R. K., Wong, M., Arokoski, J., Lindgren, R. & Helminen, H. J. Importance of the superficial tissue layer for the indentation stiffness of articular cartilage. Med. Eng. Phys. 24, 99–108 (2002). (PMID: 1188682810.1016/S1350-4533(01)00123-0) ; Gannon, A. R., Nagel, T. & Kelly, D. J. The role of the superficial region in determining the dynamic properties of articular cartilage. Osteoarthr. Cartil. 20, 1417–1425 (2012). (PMID: 10.1016/j.joca.2012.08.005) ; Pauli, C. et al. Comparison of cartilage histopathology assessment systems on human knee joints at all stages of osteoarthritis development. Osteoarthr. Cartil. 20, 476–485 (2012). (PMID: 10.1016/j.joca.2011.12.018) ; Onishi, H. et al. Phantom study of in-stent restenosis at high-spatial-resolution CT. Radiology 289, 255–260 (2018). (PMID: 2994408510.1148/radiol.2018180188) ; Ducros, N., Abascal, J.F.P.-J., Sixou, B., Rit, S. & Peyrin, F. Regularization of nonlinear decomposition of spectral x-ray projection images. Med. Phys. 44, 174–187 (2017). (PMID: 10.1002/mp.12283) ; Persson, M. et al. Energy-resolved CT imaging with a photon-counting silicon-strip detector. Phys. Med. Biol. 59, 6709–6727 (2014). (PMID: 2532749710.1088/0022-3727/59/22/6709)
  • Entry Date(s): Date Created: 20210311 Date Completed: 20211209 Latest Revision: 20230129
  • Update Code: 20231215
  • PubMed Central ID: PMC7946949

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -