Zum Hauptinhalt springen

Experimental parameters defining ultra-low biomass bioaerosol analysis.

Luhung, I ; Uchida, A ; et al.
In: NPJ biofilms and microbiomes, Jg. 7 (2021-04-16), Heft 1, S. 37
Online academicJournal

Titel:
Experimental parameters defining ultra-low biomass bioaerosol analysis.
Autor/in / Beteiligte Person: Luhung, I ; Uchida, A ; Lim, SBY ; Gaultier, NE ; Kee, C ; Lau, KJX ; Gusareva, ES ; Heinle, CE ; Wong, A ; Premkrishnan, BNV ; Purbojati, RW ; Acerbi, E ; Kim, HL ; Junqueira, ACM ; Longford, S ; Lohar, SR ; Yap, ZH ; Panicker, D ; Koh, Y ; Kushwaha, KK ; Ang, PN ; Putra, A ; Drautz-Moses, DI ; Schuster, SC
Link:
Zeitschrift: NPJ biofilms and microbiomes, Jg. 7 (2021-04-16), Heft 1, S. 37
Veröffentlichung: [New York, NY ?] : Nature Publishing Group, [2015]-, 2021
Medientyp: academicJournal
ISSN: 2055-5008 (electronic)
DOI: 10.1038/s41522-021-00209-4
Schlagwort:
  • Air Microbiology
  • Environmental Monitoring
  • Metagenome
  • Metagenomics methods
  • Soil Microbiology
  • Water Microbiology
  • Biomass
  • Ecosystem
  • Environmental Microbiology
  • Microbiota
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [NPJ Biofilms Microbiomes] 2021 Apr 16; Vol. 7 (1), pp. 37. <i>Date of Electronic Publication: </i>2021 Apr 16.
  • MeSH Terms: Biomass* ; Ecosystem* ; Environmental Microbiology* ; Microbiota* ; Air Microbiology ; Environmental Monitoring ; Metagenome ; Metagenomics / methods ; Soil Microbiology ; Water Microbiology
  • References: Darwin, C. The Voyage of the Beagle (Cosimo Inc., 2008). ; Von Humboldt, A. & Aimé B. Personal Narrative of Travels to the Equinoctial Regions of America: During the Years 1799-1804 (Cosimo Inc., 2013). ; Gilbert, J. A., Jansson, J. K. & Knight, R. The Earth Microbiome project: successes and aspirations. BMC Biol. 12, 1–4 (2014). (PMID: 10.1186/s12915-014-0069-1) ; Silvia, C. M. & Stal. J. L. The Marine Microbiome (Springer International, 2016). ; Burrows, S. M., Elbert, W. & Lawrence, M. G. Bacteria in the global atmosphere. Atmos. Chem. Phys. 9, 9263–9280 (2009). (PMID: 10.5194/acp-9-9263-2009) ; Bauer, H. et al. The contribution of bacteria and fungal spores to the organic carbon content of cloud water, precipitation and aerosols. Atmos. Res. 64, 109–119 (2002). (PMID: 10.1016/S0169-8095(02)00084-4) ; Prussin, A. J., Garcia, E. B. & Marr, L. C. Total concentrations of virus and bacteria in indoor and outdoor air. Environ. Sci. Technol. Lett. 2, 84–88 (2015). (PMID: 26225354451536210.1021/acs.estlett.5b00050) ; Jones, A. M. & Harrison, R. M. The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Sci. Total Environ. 326, 151–180 (2004). (PMID: 1514277310.1016/j.scitotenv.2003.11.021) ; Schulz-Bohm, K., Martín-Sánchez, L. & Garbeva, P. Microbial volatiles: small molecules with an important role in intra- and inter-kingdom interactions. Front Microbiol 8, 1–10 (2017). (PMID: 10.3389/fmicb.2017.02484) ; Misztal, P. K. et al. Emission factors of microbial volatile organic compounds from environmental bacteria and fungi. Environ. Sci. Technol. 52, 8272–8282 (2018). (PMID: 2994750610.1021/acs.est.8b00806) ; Bourdillon, B. Y. R. B., Lidwell, M. & Thomas, J. C. A slit sampler for collecting and counting air-borne bacteria. Epidemiol. Infect. 41, 197–224 (1941). ; Palmgren, U., Ström, G., Blomquist, G. & Malmberg, P. Collection of airborne micro-organisms on Nuclepore filters, estimation and analysis-CAMNEA method. J. Appl. Bacteriol. 61, 401–406 (1986). (PMID: 380486010.1111/j.1365-2672.1986.tb04303.x) ; Yamamoto, N. et al. Particle-size distributions and seasonal diversity of allergenic and pathogenic fungi in outdoor air. ISME J. 6, 1801–1811 (2012). (PMID: 22476354344680010.1038/ismej.2012.30) ; Lang-Yona, N. et al. Annual distribution of allergenic fungal spores in atmospheric particulate matter in the eastern mediterranean; A comparative study between ergosterol and quantitative PCR analysis. Atmos. Chem. Phys. 12, 2681–2690 (2012). (PMID: 10.5194/acp-12-2681-2012) ; Hospodsky, D. et al. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 7, e34867 (2012). (PMID: 22529946332954810.1371/journal.pone.0034867) ; Fu, X. et al. Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia. Environ. Int. 138, 105664 (2020). (PMID: 3220031610.1016/j.envint.2020.105664) ; Luhung, I. et al. Exploring temporal patterns of bacterial and fungal DNA accumulation on a ventilation system filter for a Singapore university library. PLoS ONE 13, e0200820 (2018). (PMID: 30020972605166410.1371/journal.pone.0200820) ; Amend, A. S., Seifert, K. A., Samson, R. & Bruns, T. D. Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proc. Natl Acad. Sci. 107, 13748–13753 (2010). (PMID: 2061601710.1073/pnas.10004541072922287) ; Tringe, S. G. et al. The airbone metagenome in an indoor urban environment. PLoS ONE 3, e1862 (2008). (PMID: 18382653227033710.1371/journal.pone.0001862) ; Yooseph, S. et al. A metagenomic framework for the study of airborne microbial communities. PLoS ONE 8, e81862 (2013). (PMID: 24349140385950610.1371/journal.pone.0081862) ; Cao, C. et al. Inhalable microorganisms in Beijing’s PM 2.5 and PM 10 pollutants during a severe smog event. Environ. Sci. Technol. 48, 1499–1507 (2014). (PMID: 24456276396343510.1021/es4048472) ; Gusareva, E. S. et al. Microbial communities in the tropical air ecosystem follow a precise diel cycle. Proc. Natl Acad. Sci. 116, 23299–23308 (2019). (PMID: 3165904910.1073/pnas.19084931166859341) ; Ottesen, E. A. et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science 345, 207–212 (2014). (PMID: 2501307410.1126/science.1252476) ; Kai, W. et al. Ambient bioaerosol particle dynamics observed during haze and sunny days in Beijing. Sci. Total Environ. 550, 751–759 (2016). (PMID: 10.1016/j.scitotenv.2016.01.137) ; Dybwad, M., Skogan, G. & Blatny, J. M. Comparative testing and evaluation of nine different air samplers: end-to-end sampling efficiencies as specific performance measurements for bioaerosol applications. Aerosol Sci. Technol. 48, 282–295 (2014). (PMID: 10.1080/02786826.2013.871501) ; Luhung, I. et al. Protocol improvements for low concentration DNA-based bioaerosol sampling and analysis. PLoS ONE 10, e0141158 (2015). (PMID: 26619279466446910.1371/journal.pone.0141158) ; Spring, A. M. et al. A method for collecting atmospheric microbial samples from set altitudes for use with next-generation sequencing techniques to characterize communities. Air Soil Water Res. https://doi.org/10.1177/1178622118788871 (2018). ; Jiang, W. et al. Optimized DNA extraction and metagenomic sequencing of airborne microbial communities. Nat. Protoc. 10, 768–779 (2015). (PMID: 25906115708657610.1038/nprot.2015.046) ; Kim, H., Park, K. & Lee, M. Biocompatible dispersion methods for carbon black. Toxicol. Res. 28, 209–216 (2012). (PMID: 24278612383442510.5487/TR.2012.28.4.209) ; Muthukumaran, S. et al. The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrasonic Sonochem. 12, 29–35 (2005). (PMID: 10.1016/j.ultsonch.2004.05.007) ; Cragg, M. S. et al. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood 101, 1045–1052 (2003). (PMID: 1239354110.1182/blood-2002-06-1761) ; Núñez, A. et al. Monitoring of airborne biological particles in outdoor atmosphere Part 2: metagenomics applied to urban environments. Int. Microbiol. 19, 69–80 (2016). (PMID: 27845494) ; Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386 (2007). (PMID: 17255551180092910.1101/gr.5969107) ; Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012). (PMID: 23193283353111210.1093/nar/gks1219) ; Abarenkov, K. et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. N. Phytol. 186, 281–285 (2010). (PMID: 10.1111/j.1469-8137.2009.03160.x) ; Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990). (PMID: 223171210.1016/S0022-2836(05)80360-2) ; Urich, T. et al. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3, e2527 (2008). (PMID: 18575584242413410.1371/journal.pone.0002527) ; Dommergue, A. et al. Methods to investigate the global atmospheric microbiome. Front. Microbiol. 10, 243 (2019). (PMID: 30967843639420410.3389/fmicb.2019.00243) ; Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol. Evolution 8, 635–645 (2017). (PMID: 10.1111/2041-210X.12683) ; Patterson, E. I. et al. Methods of inactivation of SARS-CoV-2 for downstream biological assays. J. Infect. Dis. 222, 1462–1467 (2020). (PMID: 3279821710.1093/infdis/jiaa507) ; Liu, C. M. et al. BactQuant: an enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012). (PMID: 22510143346414010.1186/1471-2180-12-56) ; Liu, C. M. et al. FungiQuant: a broad-coverage fungal quantitative real-time PCR assay. BMC Microbiol. 12, 1 (2012). ; Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10 (2011). (PMID: 10.14806/ej.17.1.200) ; Zhao, Y., Tang, H. & Ye, Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 28, 125–126 (2012). (PMID: 2203920610.1093/bioinformatics/btr595) ; Bokulich, N. A. & Mills, D. A. Improved selection of Internal Transcribed Spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Appl Environ. Microbiol. 79, 2519–2526 (2013). (PMID: 23377949362320010.1128/AEM.03870-12) ; Takahashi, S., Tomita, J., Nishioka, K., Hisada, T. & Nishijima, M. Development of a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using next-generation sequencing. PLoS ONE 9, e105592 (2014). (PMID: 25144201414081410.1371/journal.pone.0105592)
  • Entry Date(s): Date Created: 20210417 Date Completed: 20210810 Latest Revision: 20230131
  • Update Code: 20231215
  • PubMed Central ID: PMC8052325

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -