Zum Hauptinhalt springen

Secondary CoQ <subscript>10</subscript> deficiency, bioenergetics unbalance in disease and aging.

Navas, P ; Cascajo, MV ; et al.
In: BioFactors (Oxford, England), Jg. 47 (2021-07-01), Heft 4, S. 551-569
Online academicJournal

Titel:
Secondary CoQ <subscript>10</subscript> deficiency, bioenergetics unbalance in disease and aging.
Autor/in / Beteiligte Person: Navas, P ; Cascajo, MV ; Alcázar-Fabra, M ; Hernández-Camacho, JD ; Sánchez-Cuesta, A ; Rodríguez, ABC ; Ballesteros-Simarro, M ; Arroyo-Luque, A ; Rodríguez-Aguilera, JC ; Fernández-Ayala, DJM ; Brea-Calvo, G ; López-Lluch, G ; Santos-Ocaña, C
Link:
Zeitschrift: BioFactors (Oxford, England), Jg. 47 (2021-07-01), Heft 4, S. 551-569
Veröffentlichung: Amsterdam : Ios Press ; <i>Original Publication</i>: Oxford ; Washington, DC : Published for the International Union of Biochemistry by IRL Press, [c1988-, 2021
Medientyp: academicJournal
ISSN: 1872-8081 (electronic)
DOI: 10.1002/biof.1733
Schlagwort:
  • Aging metabolism
  • Alkyl and Aryl Transferases metabolism
  • Animals
  • Ataxia metabolism
  • Ataxia pathology
  • Energy Metabolism genetics
  • GTP Phosphohydrolases metabolism
  • Gene Expression Regulation
  • Humans
  • Mitochondria metabolism
  • Mitochondria pathology
  • Mitochondrial Diseases metabolism
  • Mitochondrial Diseases pathology
  • Mitochondrial Proteins metabolism
  • Muscle Weakness metabolism
  • Muscle Weakness pathology
  • Mutation
  • Niemann-Pick C1 Protein genetics
  • Niemann-Pick C1 Protein metabolism
  • Niemann-Pick Disease, Type C metabolism
  • Niemann-Pick Disease, Type C pathology
  • Signal Transduction
  • Ubiquinone genetics
  • Ubiquinone metabolism
  • Aging genetics
  • Alkyl and Aryl Transferases genetics
  • Ataxia genetics
  • GTP Phosphohydrolases genetics
  • Mitochondria genetics
  • Mitochondrial Diseases genetics
  • Mitochondrial Proteins genetics
  • Muscle Weakness genetics
  • Niemann-Pick Disease, Type C genetics
  • Ubiquinone analogs & derivatives
  • Ubiquinone deficiency
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Biofactors] 2021 Jul; Vol. 47 (4), pp. 551-569. <i>Date of Electronic Publication: </i>2021 Apr 20.
  • MeSH Terms: Aging / *genetics ; Alkyl and Aryl Transferases / *genetics ; Ataxia / *genetics ; GTP Phosphohydrolases / *genetics ; Mitochondria / *genetics ; Mitochondrial Diseases / *genetics ; Mitochondrial Proteins / *genetics ; Muscle Weakness / *genetics ; Niemann-Pick Disease, Type C / *genetics ; Ubiquinone / *analogs & derivatives ; Ubiquinone / *deficiency ; Aging / metabolism ; Alkyl and Aryl Transferases / metabolism ; Animals ; Ataxia / metabolism ; Ataxia / pathology ; Energy Metabolism / genetics ; GTP Phosphohydrolases / metabolism ; Gene Expression Regulation ; Humans ; Mitochondria / metabolism ; Mitochondria / pathology ; Mitochondrial Diseases / metabolism ; Mitochondrial Diseases / pathology ; Mitochondrial Proteins / metabolism ; Muscle Weakness / metabolism ; Muscle Weakness / pathology ; Mutation ; Niemann-Pick C1 Protein / genetics ; Niemann-Pick C1 Protein / metabolism ; Niemann-Pick Disease, Type C / metabolism ; Niemann-Pick Disease, Type C / pathology ; Signal Transduction ; Ubiquinone / genetics ; Ubiquinone / metabolism
  • References: Acosta MJ, Vazquez Fonseca L, Desbats MA, Cerqua C, Zordan R, Trevisson E, et al. Coenzyme Q biosynthesis in health and disease. Biochim Biophys Acta BBA Bioenerg. 2016;1857:1079-85. ; Laredj LN, Licitra F, Puccio HM. The molecular genetics of coenzyme Q biosynthesis in health and disease. Biochimie. 2014;100:78-87. ; Bentinger M, Brismar K, Dallner G. The antioxidant role of coenzyme Q. Mitochondrion. 2007;7:S41-50. ; Miles MV. The uptake and distribution of coenzyme Q(10). Mitochondrion. 2007;7:S72-7. ; Tzagoloff A, Dieckmann CL. PET genes of Saccharomyces cerevisiae. Microbiol Rev Am Soc Microbiol J. 1990;54:211-25. ; Alcázar-Fabra M, Trevisson E, Brea-Calvo G. Clinical syndromes associated with coenzyme Q10 deficiency. Essays Biochem. 2018;62:377-98. ; Stefely JA, Pagliarini DJ. Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends Biochem Sci. 2017;42:824-43. ; Eisenberg-Bord M, Tsui HS, Antunes D, Fernández-del-Río L, Bradley MC, Dunn CD, et al. The endoplasmic reticulum-mitochondria encounter structure complex coordinates coenzyme Q biosynthesis. Contact. 2019;2:1-14. ; Subramanian K, Jochem A, Le Vasseur M, Lewis S, Paulson BR, Reddy TR, et al. Coenzyme Q biosynthetic proteins assemble in a substrate-dependent manner into domains at ER-mitochondria contacts. J Cell Biol. 2019;218:1352-1368. ; Crane FL, Hatefi Y, Lester RL, Widmer C. Isolation of a quinone from beef heart mitochondria. BBA Biochim Biophys Acta. 1957;25:220-1. ; Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochim Biophys Acta BBA-Biomembr. 2004;1660:171-99. ; Tocilescu MA, Zickermann V, Zwicker K, Brandt U. Quinone binding and reduction by respiratory complex I. Biochim Biophys Acta Bioenerg. 2010;1797:1883-90. ; Wikström M, Sharma V, Kaila VRI, Hosler JP, Hummer G. New perspectives on proton pumping in cellular respiration. Chem Rev. 2015;115:2196-221. ; Bartoschek S, Johansson M, Geierstanger BH, Okun JG, Lancaster CR, Humpfer E, et al. Three molecules of ubiquinone bind specifically to mitochondrial cytochrome bc1 complex. J Biol Chem. 2001;276:35231-4. ; Santos-Ocaña C, Do TQ, Padilla S, Navas P, Clarke CF. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc 1 complex stability in Yeastcoq mutants. J Biol Chem. 2002;277:10973-81. ; Guarás A, Perales-Clemente E, Calvo E, Acín-Pérez R, Loureiro-Lopez M, Pujol C, et al. The CoQH2/CoQ ratio serves as a sensor of respiratory chain efficiency. Cell Rep. 2016;15:197-209. ; Blake RL, Hall JG, Russell ES. Mitochondrial proline dehydrogenase deficiency in hyperprolinemic PRO/re mice: genetic and enzymatic analyses. Biochem Genet. 1976;14:739-57. ; Evans DR, Guy HI. Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem. 2004;279:33035-8. ; Rauchova H, Battino M, Fato R, Lenaz G, Drahota Z. Coenzyme Q-pool function in glycerol-3-phosphate oxidation in hamster brown adipose tissue mitochondria. J Bioenerg Biomembr. 1992;24:235-41. ; Watmough NJ, Frerman FE. The electron transfer flavoprotein: ubiquinone oxidoreductases. Biochim Biophys Acta BBA Bioenerg. 2010;1797:1910-6. ; Ziosi M, Di Meo I, Kleiner G, Gao X, Barca E, Sanchez-Quintero MJ, et al. Coenzyme Q deficiency causes impairment of the sulfide oxidation pathway. EMBO Mol Med. 2017;9:96-111. ; Ernster L, Dallner G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim Biophys Acta BBA Mol Basis Dis. 1995;1271:195-204. ; Kagan VE, Arroyo A, Tyurin VA, Tyurina YY, Villalba JM, Navas P. Plasma membrane NADH-coenzyme Q 0 reductase generates semiquinone radicals and recycles vitamin E homologue in a superoxide-dependent reaction. FEBS Lett. 1998;428:43-6. ; Arroyo A, Navarro F, Gómez-Díaz C, Crane FL, Alcaín FJ, Navas P, et al. Interactions between ascorbyl free radical and coenzyme Q at the plasma membrane. J Bioenerg Biomembr. 2000;32:199-210. ; Ross D, Siegel D. Functions of NQO1 in cellular protection and CoQ10 metabolism and its potential role as a redox sensitive molecular switch. Front Physiol. 2017;8:595. ; Alehagen U, Alexander J, Aaseth J. Supplementation with selenium and coenzyme Q10 reduces cardiovascular mortality in elderly with low selenium status. A secondary analysis of a randomised clinical trial. PLOS ONE. 2016;11:e0157541. ; Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D, et al. The effect of coenzyme Q 10 on morbidity and mortality in chronic heart failure. JACC Heart Fail. 2014;2:641-9. ; Thomas SR, Neuzil J, Stocker R. Cosupplementation with coenzyme Q prevents the prooxidant effect of alpha-tocopherol and increases the resistance of LDL to transition metal-dependent oxidation initiation. Arterioscler Thromb Vasc Biol. 1996;16:687-96. ; Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 2019;575:688-92. ; Devun F, Walter L, Belliere J, Cottet-Rousselle C, Leverve X, Fontaine E. Ubiquinone analogs: a mitochondrial permeability transition pore-dependent pathway to selective cell death. PLoS ONE. 2010;5:e11792. ; Papucci L, Schiavone N, Witort E, Donnini M. Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem. 2003;278:28220-8. ; Echtay KS, Winkler E, Klingenberg M. Coenzyme Q is an obligatory cofactor for uncoupling protein function. Nature. 2000;408:609-13. ; Mignot C, Apartis E, Durr A, Marques Lourenço C, Charles P, Devos D, et al. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet J Rare Dis. 2013;8:173. ; Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, et al. Clinico-genetic, imaging and molecular delineation of COQ8A -ataxia: a multicenter study of 59 patients. Ann Neurol. 2020;88:251-63. ; Song X, Fang X, Tang X, Cao Q, Zhai Y, Chen J, et al. COQ8B nephropathy: early detection and optimal treatment. Mol Genet Genomic Med. 2020;20:1-10. https://onlinelibrary.wiley.com/doi/full/10.1002/mgg3.1360. ; Heeringa SF, Chernin G, Chaki M, Zhou W, Sloan AJ, Ji Z, et al. COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness. J Clin Invest. 2011;121:2013-24. ; Desbats MA, Morbidoni V, Silic-Benussi M, Doimo M, Ciminale V, Cassina M, et al. The COQ2 genotype predicts the severity of coenzyme Q 10 deficiency. Hum Mol Genet. 2016;25:4256-65. ; Brea-Calvo G, Haack TBB, Karall D, Ohtake A, Invernizzi F, Carrozzo R, et al. COQ4 mutations cause a broad Spectrum of mitochondrial disorders associated with CoQ10 deficiency. Am J Hum Genet. 2015;96:309-17. ; Desbats MA, Lunardi G, Doimo M, Trevisson E, Salviati L. Genetic bases and clinical manifestations of coenzyme Q10 (CoQ 10) deficiency. J Inherit Metab Dis. 2014;10:145-56. ; Yubero D, Montero R, Martín MA, Montoya J, Ribes A, Grazina M, et al. Secondary coenzyme Q 10 deficiencies in oxidative phosphorylation (OXPHOS) and non-OXPHOS disorders. Mitochondrion. 2016;30:51-8. ; Bentinger M, Tekle M, Dallner G. Coenzyme Q-biosynthesis and functions. Biochem Biophys Res Commun. 2010;396:74-9. ; González-Mariscal I, García-Testón E, Padilla S, Martín-Montalvo A, Pomares-Viciana T, Vazquez-Fonseca L, et al. Regulation of coenzyme Q biosynthesis in yeast: a new complex in the block. IUBMB Life. 2014;66:63-70. ; Sacconi S, Trevisson E, Salviati L, Aymé S, Rigal O, Redondo AG, et al. Coenzyme Q10 is frequently reduced in muscle of patients with mitochondrial myopathy. Neuromuscul Disord. 2010;20:44-8. ; Trevisson E, DiMauro S, Navas P, Salviati L. Coenzyme Q deficiency in muscle. Curr Opin Neurol. 2011;24:449-56. ; Quinzii CM, Hirano M. Primary and secondary CoQ(10) deficiencies in humans. BioFactors Oxf Engl. 2012;37:361-5. ; Vazquez Fonseca L, Doimo M, Calderan C, Desbats MA, Acosta MJ, Cerqua C, et al. Mutations in COQ8B (ADCK4) found in patients with steroid-resistant nephrotic syndrome alter COQ8B function. Hum Mutat. 2018;39:406-14. ; Parikh S, Goldstein A, Koenig MK, Scaglia F, Enns GM, Saneto R, et al. Diagnosis and management of mitochondrial disease: a consensus statement from the mitochondrial medicine society. Genet Med. 2015;17:689-701. ; Ogasahara S, Engel AG, Frens D, Mack D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A. 1989;86:2379-82. ; Quinzii CM, DiMauro S, Hirano M. Human coenzyme Q 10 deficiency. Neurochem Res. 2007;32:723-727. https://link.springer.com/article/10.1007/s11064-006-9190-z. ; Rustin P, Munnich A, Rötig A. Mitochondrial respiratory chain dysfunction caused by coenzyme Q deficiency. Meth Enzym. 2004;382:81-8. ; Boitier E, Degoul F, Desguerre I, Charpentier C, François D, Ponsot G, et al. A case of mitochondrial encephalomyopathy associated with a muscle coenzyme Q10 deficiency. J Neurol Sci. 1998;156:41-6. ; Sobreira C, Hirano M, Shanske S, Keller RK, Haller RG, Davidson E, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 1997;48:1238-43. ; Vajo, Arnold Munnich, Douglas J. Wi, Z. (2000) Coenzyme q deficiency in two unrelated patients-molecular studies. Pediatr Pathol Mol Med 19, 69-72. ; Rahman S, Hargreaves I, Clayton P, Heales S. Neonatal presentation of coenzyme Q10 deficiency. J Pediatr. 2001;139:456-8. ; Musumeci O, Naini A, Slonim AE, Skavin N, Hadjigeorgiou GL, Krawiecki N, et al. Familial cerebellar ataxia with muscle coenzyme Q10 deficiency. Neurology. 2001;56:849-55. ; Artuch R, Brea-Calvo G, Briones P, Aracil A, Galván M, Espinós C, et al. Cerebellar ataxia with coenzyme Q10 deficiency: diagnosis and follow-up after coenzyme Q10 supplementation. J Neurol Sci. 2006;246:153-8. ; Lamperti C, Naini A, Hirano M, De Vivo DC, Bertini E, Servidei S, et al. Cerebellar ataxia and coenzyme Q10 deficiency. Neurology. 2003;60:1206-8. ; Quinzii CM, Kattah AG, Naini A, Akman HO, Mootha VK, DiMauro S, et al. Coenzyme Q deficiency and cerebellar ataxia associated with an aprataxin mutation. Neurology. 2005;64:539-41. ; Maldergem LV, Trijbels F, DiMauro S, Sindelar PJ, Musumeci O, Janssen A, et al. Coenzyme Q- responsive Leigh's encephalopathy in two sisters. Ann Neurol. 2002;52:750-754. https://onlinelibrary.wiley.com/doi/full/10.1002/ana.10371. ; Lake NJ, Compton AG, Rahman S, Thorburn DR. Leigh syndrome: one disorder, more than 75 monogenic causes. Ann. Neurol. 2016;79:190-203. ; Horvath R, Schneiderat P, Schoser BGH, Gempel K, Neuen-Jacob E, Plöger H, et al. Coenzyme Q10 deficiency and isolated myopathy. Neurology. 2006;66:253-5. ; Lalani SR, Vladutiu GD, Plunkett K, Lotze TE, Adesina AM, Scaglia F. Isolated mitochondrial myopathy associated with muscle coenzyme Q10 deficiency. Arch Neurol. 2005;62:317-20. ; Salviati L, Trevisson E, Doimo M, Navas P. Primary coenzyme Q 10 deficiency summary genetic counseling. GeneReviews® [Internet]. 2017. https://onlinelibrary.wiley.com/doi/full/10.1002/ana.10371. ; López-Martín JM, Salviati L, Trevisson E, Montini G, DiMauro S, Quinzii C, et al. Missense mutation of the COQ2 gene causes defects of bioenergetics and de novo pyrimidine synthesis. Hum Mol Genet. 2007;16:1091-7. ; Forsgren M, Attersand A, Lake S, Grünler J, SWIEZEWSKA E, DALLNER G, et al. Isolation and functional expression of human COQ2, a gene encoding a polyprenyl transferase involved in the synthesis of CoQ. Biochem J. 2004;382:519-26. ; Krieger E, Vriend G. YASARA view-molecular graphics for all devices-from smartphones to workstations. Bioinformatics. 2014;30:2981-2. ; Tsai PY, Ka SM, Chao TK, Chang JM, Lin SH, Li CY, et al. Antroquinonol reduces oxidative stress by enhancing the Nrf2 signaling pathway and inhibits inflammation and sclerosis in focal segmental glomerulosclerosis mice. Free Radic Biol Med. 2011;50:1503-16. ; Ashraf S, Gee HY, Woerner S, Xie LX, Vega-Warner V, Lovric S, et al. ADCK4 mutations promote steroid-resistant nephrotic syndrome through CoQ10 biosynthesis disruption. J Clin Invest, J Clin Invest. 2013;123:5179-89. ; Saleem MA. One hundred ways to kill a podocyte. Nephrol Dial Transplant. 2015;30:1266-71. ; Atmaca M, Gulhan B, Korkmaz E, Inozu M, Soylemezoglu O, Candan C, et al. Follow-up results of patients with ADCK4 mutations and the efficacy of CoQ10 treatment. Pediatr Nephrol. 2017;32:1369-75. ; Tan W, Airik R. Primary coenzyme Q10 nephropathy, a potentially treatable form of steroid-resistant nephrotic syndrome. Pediatr Nephrol. 2021;1:1-13. https://link.springer.com/article/10.1007%2Fs00467-020-04914-8. ; Widmeier E, Airik M, Hugo H, Schapiro D, Wedel J, Ghosh CC, et al. Treatment with 2,4-Dihydroxybenzoic acid prevents FSGS progression and renal fibrosis in podocyte-specific Coq6Knockout mice. J Am Soc Nephrol. 2019;30:393-405. ; Aberg F, Zhang Y, Teclebrhan H, Appelkvist EL, Dallner G. Increases in tissue levels of ubiquinone in association with peroxisome proliferation. Chem Biol Interact. 1996;99:205-18. ; Watanabe, K., Nozaki, S., Goto, M., Kaneko, K. ichi, Hayashinaka, E., Irie, S., Nishiyama, A., Kasai, K., Fujii, K., Wada, Y., et al. (2019) PET imaging of 11 C-labeled coenzyme Q 10 : comparison of biodistribution between [ 11 C]ubiquinol-10 and [ 11 C]ubiquinone-10. Biochem Biophys Res Commun, 512, 611-615. ; Bentinger M, Dallner G, Chojnacki T, Swiezewska E. Distribution and breakdown of labeled coenzyme Q10 in rat. Free Radic Biol Med. 2003;34:563-75. ; Andersson M, Elmberger PO, Edlund C, Kristensson K, Dallner G. Rates of cholesterol, ubiquinone, dolichol and dolichyl-P biosynthesis in rat brain slices. FEBS Lett. 1990;269:15-8. ; Calvo SE, Mootha VK. The mitochondrial proteome and human disease. Annu Rev Genomics Hum Genet. 2010;11:25-44. ; Mourier A, Motori E, Brandt T, Lagouge M, Atanassov I, Galinier A, et al. Mitofusin 2 is required to maintain mitochondrial coenzyme Q levels. J Cell Biol. 2015;208:429-42. ; Fernández-Ayala DJM, Guerra I, Jiménez-Gancedo S, Cascajo MV, Gavilán A, Dimauro S, et al. Survival transcriptome in the coenzyme Q10 deficiency syndrome is acquired by epigenetic modifications: a modelling study for human coenzyme Q10 deficiencies. BMJ Open. 2013;3:e002524. ; Liu Y, Xing J, Li Y, Luo Q, Su Z, Zhang X, et al. Chronic hypoxia-induced Cirbp hypermethylation attenuates hypothermic cardioprotection via down-regulation of ubiquinone biosynthesis. Sci Transl Med. 2019;11:eaat8406. ; Montero R, Grazina M, López-Gallardo E, Montoya J, Briones P, Navarro-Sastre A, et al. Coenzyme Q10 deficiency in mitochondrial DNA depletion syndromes. Mitochondrion. 2013;13:337-41. ; Kühl I, Miranda M, Atanassov I, Kuznetsova I, Hinze Y, Mourier A, et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. Elife. 2017;6:1-33. ; Fernandez-Vizarra E, Bugiani M, Goffrini P, Carrara F, Farina L, Procopio E, et al. Impaired complex III assembly associated with BCS1L gene mutations in isolated mitochondrial encephalopathy. Hum Mol Genet. 2007;16:1241-52. ; Bris C, Rouaud T, Desquiret-Dumas V, Gueguen N, Goudenege D, Barth M, et al. Novel NDUFS4 gene mutation in an atypical late-onset mitochondrial form of multifocal dystonia. Neurol Genet. 2017;3:e205. ; Ortigoza-Escobar JD, Oyarzabal A, Montero R, Artuch R, Jou C, Jiménez C, et al. Ndufs4 related Leigh syndrome: a case report and review of the literature. Mitochondrion. 2016;28:73-8. ; Talim B, Pyle A, Griffin H, Topaloglu H, Tokatli A, Keogh MJ, et al. Multisystem fatal infantile disease caused by a novel homozygous EARS2 mutation. Brain. 2013;136:e228-8. ; Taskin BD, Karalok ZS, Gurkas E, Aydin K, Aydogmus U, Ceylaner S, et al. Early-onset mild type leukoencephalopathy caused by a homozygous EARS2 mutation. J Child Neurol. 2016;31:938-41. ; Cotan D, Cordero MD, Garrido-Maraver J, Oropesa-Avila M, Rodriguez-Hernandez A, Gomez Izquierdo L, et al. Secondary coenzyme Q10 deficiency triggers mitochondria degradation by mitophagy in MELAS fibroblasts. FASEB J. 2011;25:2669-87. ; Spinazzi M, De Strooper B. PARL: the mitochondrial rhomboid protease. Semin Cell Dev Biol. 2016;60:19-28. ; Bottani E, Cerutti R, Harbour ME, Ravaglia S, Dogan SA, Giordano C, et al. TTC19 plays a husbandry role on UQCRFS1 turnover in the biogenesis of mitochondrial respiratory complex III. Mol Cell. 2017;67:96-105.e4. ; Spinazzi M, Radaelli E, Horré K, Arranz AM, Gounko NV, Agostinis P, et al. PARL deficiency in mouse causes complex III defects, coenzyme Q depletion, and Leigh-like syndrome. Proc Natl Acad Sci. 2019;116:277-86. ; Enriquez JA, Lenaz G. Coenzyme Q and the respiratory chain: coenzyme Q pool and mitochondrial supercomplexes. Mol Syndromol. 2014;5:119-40. ; Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E, et al. Supercomplex assembly determines electron flux in the mitochondrial Electron transport chain. Science. 2013;340:1567-70. ; Fedor JG, Hirst J. Mitochondrial supercomplexes do not enhance catalysis by quinone channeling. Cell Metab. 2018;28:525-531.e4. ; Nohl H, Gille L, Kozlov AV. Antioxidant-derived prooxidant formation from ubiquinol. Free Radic Biol Med Pergamon. 1998;25:666-75. ; Buján N, Arias A, Montero R, García-Villoria J, Lissens W, Seneca S, et al. Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency. J Inherit Metab Dis. 2014;37:53-62. ; Gempel K, Topaloglu H, Talim B, Schneiderat P, Schoser BGH, Hans VH, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130:2037-44. ; Gorukmez O, Gorukmez O, Sag SO, Erdol S, Saglam H, Yakut T. Novel mutation of the electron transferring flavoprotein dehydrogenase (ETFDH) gene in the isolated myopathic form of coenzyme Q10 deficiency. Genet Couns Geneva Switz. 2015;26:259-62. ; Liang W-C, Ohkuma A, Hayashi YK, López LC, Hirano M, Nonaka I, et al. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2009;19:212-6. ; Wen B, Li D, Shan J, Liu S, Li W, Zhao Y, et al. Increased muscle coenzyme Q10 in riboflavin responsive MADD with ETFDH gene mutations due to secondary mitochondrial proliferation. Mol Genet Metab. 2013;109:154-60. ; Liang W-C, Lin Y-F, Liu T-Y, Chang S-C, Chen B-H, Nishino I, et al. Neurite growth could be impaired by ETFDH mutation but restored by mitochondrial cofactors. Muscle Nerve. 2017;56:479-85. ; Missaglia S, Tavian D, Moro L, Angelini C. Characterization of two ETFDH mutations in a novel case of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Lipids Health Dis. 2018;17:254. ; Vázquez-Fonseca S, Navas-Enamorado S-O, Hernández-Camacho G, Cascajo S-C, Horvath S, et al. ADCK2 Haploinsufficiency reduces mitochondrial lipid oxidation and causes myopathy associated with CoQ deficiency. J Clin Med. 2019;8:1374. ; Tsui HS, Pham NVB, Amer BR, Bradley MC, Gosschalk JE, Gallagher-Jones M, et al. Human COQ10A and COQ10B are distinct lipid-binding START domain proteins required for coenzyme Q function. J Lipid Res. 2019;60:1293-310. ; Allan CM, Hill S, Morvaridi S, Saiki R, Johnson JS, Liau W-S, et al. A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae. Biochim Biophys Acta. 2013;1831:776-91. ; Barros MH, Johnson A, Gin P, Marbois BN, Clarke CF, Tzagoloff A. The Saccharomyces cerevisiae COQ10 gene encodes a START domain protein required for function of coenzyme Q in respiration. J Biol Chem. 2005;280:42627-35. ; Yen H-C, Yeh W-Y, Lee S-H, Feng Y-H, Yang S-L. Characterization of human mitochondrial PDSS and COQ proteins and their roles in maintaining coenzyme Q10 levels and each other's stability. Biochim. Biophys. Acta BBA Bioenerg. 2020;1861:148192. ; Veling MT, Reidenbach AG, Freiberger EC, Kwiecien NW, Hutchins PD, Drahnak MJ, et al. Multi-omic Mitoprotease profiling defines a role for Oct1p in coenzyme Q production. Mol Cell. 2017;68:970-977.e11. ; FESTENSTEIN GN, HEATON FW, LOWE JS, MORTON RA. A constituent of the unsaponifiable portion of animal tissue lipids (lambda max. 272 m mu). Biochem J. 1955;59:558-66. ; Takahashi T, Okamoto T, Mori K, Sayo H, Kishi T. Distribution of ubiquinone and ubiquinol homologues in rat tissues and subcellular fractions. Lipids. 1993;28:803-9. ; Fernández-Ayala DJM, Brea-Calvo G, López-Lluch G, Navas P. Coenzyme Q distribution in HL-60 human cells depends on the endomembrane system. Biochim Biophys Acta. 2005;1713:129-37. ; Padilla-López S, Jiménez-Hidalgo M, Martín-Montalvo A, Clarke CF, Navas P, Santos-Ocaña C. Genetic evidence for the requirement of the endocytic pathway in the uptake of coenzyme Q6 in Saccharomyces cerevisiae. Biochim Biophys Acta BBA Biomembr. 2009;1788:1238-48. ; Fernández-Ayala DJM, López-Lluch G, García-Valdés M, Arroyo A, Navas P. Specificity of coenzyme Q10 for a balanced function of respiratory chain and endogenous ubiquinone biosynthesis in human cells. Biochim Biophys Acta. 2005;1706:174-83. ; Fernández-del-Río L, Kelly ME, Contreras J, Bradley MC, James AM, Murphy MP, et al. Genes and lipids that impact uptake and assimilation of exogenous coenzyme Q in Saccharomyces cerevisiae. Free Radic Biol Med. 2020;154:105-18. ; Wang Y, Hekimi S. The complexity of making ubiquinone. Trends Endocrinol Metab. 2019;30:929-43. ; Hirabayashi Y, Kwon S-K, Paek H, Pernice WM, Paul MA, Lee J, et al. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science. 2017;358:623-30. ; Shirane M, Wada M, Morita K, Hayashi N, Kunimatsu R, Matsumoto Y, et al. Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nat Commun. 2020;11:4576. ; Elbaz-Alon Y, Guo Y, Segev N, Harel M, Quinnell DE, Geiger T, et al. PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria. Nat Commun. 2020;11:3645. ; Yu W, Gong J-S, Ko M, Garver WS, Yanagisawa K, Michikawa M. Altered cholesterol metabolism in Niemann-pick type C1 mouse brains affects mitochondrial function. J Biol Chem. 2005;280:11731-9. ; Marí M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab. 2006;4:185-98. ; Torres S, García-Ruiz CM, Fernandez-Checa JC. Mitochondrial cholesterol in Alzheimer's disease and Niemann-pick type C disease. Front Neurol. 2019;10:1168. ; Solsona-Vilarrasa E, Fucho R, Torres S, Nuñez S, Nuño-Lámbarri N, Enrich C, et al. Cholesterol enrichment in liver mitochondria impairs oxidative phosphorylation and disrupts the assembly of respiratory supercomplexes. Redox Biol. 2019;24:101214. ; Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, et al. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Nat Genet. 2001;29:184-8. ; Moreira M-C, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, et al. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Nat Genet. 2001;29:189-93. ; Du J, Zhou Y, Li Y, Xia J, Chen Y, Chen S, et al. Identification of Frataxin as a regulator of ferroptosis. Redox Biol. 2020;32:101483. ; Pandolfo M. Frataxin deficiency and mitochondrial dysfunction. Mitochondrion. 2002;2:87-93. ; Bernard G, Shevell MI. Channelopathies: a review. Pediatr Neurol. 2008;38:73-85. ; Balreira A, Boczonadi V, Barca E, Pyle A, Bansagi B, Appleton M, et al. ANO10 mutations cause ataxia and coenzyme Q10 deficiency. J Neurol. 2014;261:2192-8. ; Chamard L, Sylvestre G, Koenig M, Magnin E. Executive and Attentional disorders, epilepsy and Porencephalic cyst in autosomal recessive cerebellar Ataxia type 3 due to ANO10. Mutation Eur Neurol. 2016;75:186-90. ; Nanetti L, Sarto E, Castaldo A, Magri S, Mongelli A, Rossi Sebastiano D, et al. ANO10 mutational screening in recessive ataxia: genetic findings and refinement of the clinical phenotype. J Neurol. 2019;266:378-85. ; Yubero D, O'Callaghan M, Montero R, Ormazabal A, Armstrong J, Espinos C, et al. Association between coenzyme Q10 and glucose transporter (GLUT1) deficiency. BMC Pediatr. 2014;14:284. ; Barca E, Tang M, Kleiner G, Engelstad K, DiMauro S, Quinzii CM, et al. CoQ10 deficiency is not a common finding in GLUT1 deficiency syndrome. In: Morava E, Baumgartner M, Patterson M, Rahman S, Zschocke J, Peters V, editors. JIMD reports. Volume 29. Berlin Heidelberg, Berlin, Heidelberg: Springer; 2015. p. 47-52. ; Yubero D, Adin A, Montero R, Jou C, Jiménez-Mallebrera C, García-Cazorla A, et al. A statistical algorithm showing coenzyme Q10and citrate synthase as biomarkers for mitochondrial respiratory chain enzyme activities. Sci Rep. 2016;6:1-7. ; Rodríguez-Aguilera J, Cortés A, Fernández-Ayala D, Navas P. Biochemical assessment of coenzyme Q10 deficiency. J Clin Med. 2017;6:27. ; López-Lluch G, Hernández-Camacho JD, Fernández-Ayala DJM, Navas P. Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology. 2018;19:461-80. ; López-Otín C, Blasco M a, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194-217. ; Greaves LC, Reeve AK, Taylor RW, Turnbull DM. Mitochondrial DNA and disease. J Pathol. 2012;226:274-86. ; Larsson N-G. Somatic mitochondrial DNA mutations in mammalian aging. Annu Rev Biochem. 2010;79:683-706. ; Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P. Coenzyme Q10 supplementation in aging and disease. Front Physiol. 2018;9:44. ; Kalén A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids. 1989;24:579-84. ; Beyer RE, Burnett BA, Cartwright KJ, Edington DW, Falzon MJ, Kreitman KR, et al. Tissue coenzyme Q (ubiquinone) and protein concentrations over the life span of the laboratory rat. Mech Ageing Dev. 1985;32:267-81. ; Edlund C, Holmberg K, Dallner G, Norrby E, Kristensson K. Ubiquinone-10 protects neurons from virus-induced degeneration. J Neurochem. 1994;63:634-9. ; Zhang Y, Turunen M, Appelkvist EL. Restricted uptake of dietary coenzyme Q is in contrast to the unrestricted uptake of alpha-tocopherol into rat organs and cells. J Nutr. 1996;126:2089-97. ; Mantle D, Hargreaves I. Coenzyme Q10 and degenerative disorders affecting longevity: an overview. Antioxid Basel Switz. 2019;8:1-10. https://www.mdpi.com/2076-3921/8/2/44. ; Fazakerley DJ, Chaudhuri R, Yang P, Maghzal GJ, Thomas KC, Krycer JR, et al. Mitochondrial CoQ deficiency is a common driver of mitochondrial oxidants and insulin resistance. Elife. 2018;7:e32111. ; Shimizu M, Miyazaki T, Takagi A, Sugita Y, Yatsu S, Murata A, et al. Low circulating coenzyme Q10 during acute phase is associated with inflammation, malnutrition, and in-hospital mortality in patients admitted to the coronary care unit. Heart Vessels. 2017;32:668-73. ; Ogawa O, Zhu X, Perry G, Smith MA. Mitochondrial abnormalities and oxidative imbalance in neurodegenerative disease. Sci Aging Knowl Environ. 2002;2002:pe16. ; Gvozdjakova A, Kucharska J, Sumbalova Z, Rausova Z, Chladekova A, Komlosi M, et al. The importance of coenzyme Q10 and its ratio to cholesterol in the progress of chronic kidney diseases linked to non- -communicable diseases. Bratisl Lek Listy. 2020;121:693-9. ; Chen K, Chen X, Xue H, Zhang P, Fang W, Chen X, et al. Coenzyme Q10 attenuates high-fat diet-induced non-alcoholic fatty liver disease through activation of the AMPK pathway. Food Funct. 2019;10:814-23. ; Fuller B, Smith D, Howerton A, Kern D. Anti-inflammatory effects of CoQ10 and colorless carotenoids. J Cosmet Dermatol. 2006;5:30-8. ; Guescini M, Tiano L, Genova ML, Polidori E, Silvestri S, Orlando P, et al. The combination of physical exercise with muscle-directed antioxidants to counteract sarcopenia: a biomedical rationale for pleiotropic treatment with Creatine and coenzyme Q10. Oxid Med Cell Longev. 2017;2017:7083049. ; Takahashi K, Ohsawa I, Shirasawa T, Takahashi M. Early-onset motor impairment and increased accumulation of phosphorylated α-synuclein in the motor cortex of normal aging mice are ameliorated by coenzyme Q. Exp Gerontol. 2016;81:65-75. ; Tarry-Adkins JL, Blackmore HL, Martin-Gronert MS, Fernandez-Twinn DS, McConnell JM, Hargreaves IP, et al. Coenzyme Q10 prevents accelerated cardiac aging in a rat model of poor maternal nutrition and accelerated postnatal growth. Mol Metab. 2013;2:480-90. ; Yang Y-K, Wang L-P, Chen L, Yao X-P, Yang K-Q, Gao L-G, et al. Coenzyme Q10 treatment of cardiovascular disorders of ageing including heart failure, hypertension and endothelial dysfunction. Clin Chim Acta Int J Clin Chem. 2015;450:83-9. ; Marcheggiani F, Kordes S, Cirilli I, Orlando P, Silvestri S, Vogelsang A, et al. Anti-ageing effects of ubiquinone and ubiquinol in a senescence model of human dermal fibroblasts. Free Radic Biol Med. 2021;165:282-8. ; Huo J, Xu Z, Hosoe K, Kubo H, Miyahara H, Dai J, et al. Coenzyme Q10 prevents senescence and dysfunction caused by oxidative stress in vascular endothelial cells. Oxid Med Cell Longev. 2018;2018:3181759. ; López-Lluch G, Rodríguez-Aguilera JC, Santos-Ocaña C, Navas P. Is coenzyme Q a key factor in aging? Mech Ageing Dev. 2010;131:225-35. ; Hargreaves IP, Mantle D. Coenzyme Q10 supplementation in fibrosis and aging. Adv Exp Med Biol. 2019;1178:103-12. ; Varela-López A, Ochoa JJ, Llamas-Elvira JM, López-Frías M, Planells E, Ramirez-Tortosa M, et al. Age-related loss in bone mineral density of rats fed lifelong on a fish oil-based diet is avoided by coenzyme Q10 addition. Nutrients. 2017;9:1-18. ; Turunen M, Dallner G. Elevation of ubiquinone content by peroxisomal inducers in rat liver during aging. Chem Biol Interact. 1998;116:79-91. ; Díaz-Casado ME, Quiles JL, Barriocanal-Casado E, González-García P, Battino M, López LC, et al. The paradox of coenzyme Q10 in aging. Nutrients. 2019;11:1-33. ; Rodríguez-Hidalgo M, Luna-Sánchez M, Hidalgo-Gutiérrez A, Barriocanal-Casado E, Mascaraque C, Acuña-Castroviejo D, et al. Reduction in the levels of CoQ biosynthetic proteins is related to an increase in lifespan without evidence of hepatic mitohormesis. Sci Rep. 2018;8:14013. ; Doimo M, Desbats M a, Cerqua C, Cassina M, Trevisson E, Salviati L. Genetics of coenzyme Q10 deficiency. Mol Syndromol. 2014;5:156-162. ; Yubero D, Allen G, Artuch R, Montero R. The value of coenzyme Q10 determination in mitochondrial patients. J Clin Med. 2017;6:37. ; Montini G, Malaventura C, Salviati L. Early coenzyme Q10 supplementation in primary coenzyme Q10 deficiency. N Engl J Med. 2008;358:2849-50. ; Rotig A, Appelkvist EL, Geromel V, Chretien D, Kadhom N, Edery P, et al. Quinone-responsive multiple respiratory-chain dysfunction due to widespread coenzyme Q10 deficiency. Lancet. 2000;356:391-5. ; Saiki R, Lunceford AL, Shi Y, Marbois B, King R, Pachuski J, et al. Coenzyme Q10 supplementation rescues renal disease in Pdss2kd/kd mice with mutations in prenyl diphosphate synthase subunit 2. Am J Physiol Renal Physiol. 2008;295:F1535-44. ; López-Lluch G, del Pozo-Cruz J, Sánchez-Cuesta A, Cortés-Rodríguez AB, Navas P. Bioavailability of coenzyme Q10 supplements depends on carrier lipids and solubilization. Nutrition. 2019;57:133-40. ; Miles MV, Patterson BJ, Schapiro MB, Hickey FJ, Chalfonte-Evans M, Horn PS, et al. Coenzyme Q10 absorption and tolerance in children with down syndrome: a dose-ranging trial. Pediatr Neurol. 2006;35:30-7. ; Franke AA, Morrison CM, Bakke JL, Custer LJ, Li X, Cooney RV. Coenzyme Q10 in human blood: native levels and determinants of oxidation during processing and storage. Free Radic Biol Med. 2010;48:1610-7. ; López LC, Quinzii CM, Area E, Naini A, Rahman S, Schuelke M, et al. Treatment of CoQ(10) deficient fibroblasts with ubiquinone, CoQ analogs, and vitamin C: time- and compound-dependent effects. PloS One. 2010;5:e11897. ; Hughes BG, Harrison PM, Hekimi S. Estimating the occurrence of primary ubiquinone deficiency by analysis of large-scale sequencing data. Sci Rep. 2017;7:17744. ; Yubero D, Montero R, Santos-Ocaña C, Salviati L, Navas P, Artuch R. Molecular diagnosis of coenzyme Q10 deficiency: an update. Expert Rev Mol Diagn. 2018;18:491-8. ; Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235-42. ; Cheng W, Li W. Structural insights into ubiquinone biosynthesis in membranes. Science. 2014;343:878-81. ; Huang H, Levin EJ, Liu S, Bai Y, Lockless SW, Zhou M. Structure of a membrane-embedded prenyltransferase homologous to UBIAD1. PLoS Biol. 2014;12:e1001911. ; Herebian D, Seibt A, Smits SHJ, Rodenburg RJ, Mayatepek E, Distelmaier F. 4-Hydroxybenzoic acid restores CoQ10 biosynthesis in human COQ2 deficiency. Ann Clin Transl Neurol. 2017;4:902-8. ; Garone C, Gurgel-Giannetti J, Sanna-Cherchi S, Krishna S, Naini A, Quinzii CM, et al. A novel SUCLA2 mutation presenting as a complex childhood movement disorder. J Child Neurol. 2017;32:246-50. ; Aeby A, Sznajer Y, Cavé H, Rebuffat E, Van Coster R, Rigal O, et al. Cardiofaciocutaneous (CFC) syndrome associated with muscular coenzyme Q10 deficiency. J Inherit Metab Dis. 2007;30:827. ; Ross JM, Coppotelli G, Branca RM, Kim KM, Lehtiö J, Sinclair DA, et al. Voluntary exercise normalizes the proteomic landscape in muscle and brain and improves the phenotype of progeroid mice. Aging Cell. 2019;18:1-16.
  • Grant Information: UPO-1259581 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía; UPO-126247 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía; UPO-1265673 Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía; PI17/01286 Instituto de Salud Carlos III; FPU14/04873 Ministerio de Educación, Cultura y Deporte; FPU16/03264 Ministerio de Educación, Cultura y Deporte
  • Contributed Indexing: Keywords: CoQ10 deficiency; aging; coenzyme CoQ10; mitochondrial dysfunction; rare diseases
  • Substance Nomenclature: 0 (Mitochondrial Proteins) ; 0 (NPC1 protein, human) ; 0 (Niemann-Pick C1 Protein) ; 1339-63-5 (Ubiquinone) ; EC 2.5.- (Alkyl and Aryl Transferases) ; EC 2.5.1.- (4-hydroxybenzoate polyprenyltransferase) ; EC 3.6.1.- (GTP Phosphohydrolases) ; EC 3.6.1.- (MFN2 protein, human) ; EJ27X76M46 (coenzyme Q10) ; I7T5V2W47R (Ubiquinone Q2)
  • SCR Disease Name: Coenzyme Q10 Deficiency
  • Entry Date(s): Date Created: 20210420 Date Completed: 20220106 Latest Revision: 20220106
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -