Zum Hauptinhalt springen

Somatic mutation landscapes at single-molecule resolution.

Abascal, F ; Harvey, LMR ; et al.
In: Nature, Jg. 593 (2021-05-01), Heft 7859, S. 405-410
Online academicJournal

Titel:
Somatic mutation landscapes at single-molecule resolution.
Autor/in / Beteiligte Person: Abascal, F ; Harvey, LMR ; Mitchell, E ; Lawson, ARJ ; Lensing, SV ; Ellis, P ; Russell, AJC ; Alcantara, RE ; Baez-Ortega, A ; Wang, Y ; Kwa, EJ ; Lee-Six, H ; Cagan, A ; Coorens, THH ; Chapman, MS ; Olafsson, S ; Leonard, S ; Jones, D ; Machado, HE ; Davies, M ; Øbro, NF ; Mahubani, KT ; Allinson, K ; Gerstung, M ; Saeb-Parsy, K ; Kent, DG ; Laurenti, E ; Stratton, MR ; Rahbari, R ; Campbell, PJ ; Osborne, RJ ; Martincorena, I
Link:
Zeitschrift: Nature, Jg. 593 (2021-05-01), Heft 7859, S. 405-410
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2021
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-021-03477-4
Schlagwort:
  • Alzheimer Disease genetics
  • Blood Cells cytology
  • Cell Division
  • Cohort Studies
  • Colon cytology
  • Epithelium metabolism
  • Granulocytes cytology
  • Granulocytes metabolism
  • Healthy Volunteers
  • Humans
  • Male
  • Middle Aged
  • Muscle, Smooth cytology
  • Mutagenesis
  • Mutation Rate
  • Neurons cytology
  • Stem Cells cytology
  • Blood Cells metabolism
  • Cell Differentiation genetics
  • DNA Mutational Analysis methods
  • Muscle, Smooth metabolism
  • Mutation
  • Neurons metabolism
  • Single Molecule Imaging methods
  • Stem Cells metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2021 May; Vol. 593 (7859), pp. 405-410. <i>Date of Electronic Publication: </i>2021 Apr 28.
  • MeSH Terms: Mutation* ; Blood Cells / *metabolism ; Cell Differentiation / *genetics ; DNA Mutational Analysis / *methods ; Muscle, Smooth / *metabolism ; Neurons / *metabolism ; Single Molecule Imaging / *methods ; Stem Cells / *metabolism ; Alzheimer Disease / genetics ; Blood Cells / cytology ; Cell Division ; Cohort Studies ; Colon / cytology ; Epithelium / metabolism ; Granulocytes / cytology ; Granulocytes / metabolism ; Healthy Volunteers ; Humans ; Male ; Middle Aged ; Muscle, Smooth / cytology ; Mutagenesis ; Mutation Rate ; Neurons / cytology ; Stem Cells / cytology
  • Comments: Comment in: Cell Res. 2021 Sep;31(9):949-950. (PMID: 34316001)
  • References: Kennedy, S. R., Loeb, L. A. & Herr, A. J. Somatic mutations in aging, cancer and neurodegeneration. Mech. Ageing Dev. 133, 118–126 (2012). (PMID: 2207940510.1016/j.mad.2011.10.009) ; Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013). (PMID: 23539594374988010.1126/science.1235122) ; Martincorena, I. et al. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015. (PMID: 25999502447114910.1126/science.aaa6806) ; Martincorena, I. et al. Somatic mutant clones colonize the human esophagus with age. Science 362, 911–917 (2018). (PMID: 30337457629857910.1126/science.aau3879) ; Yizhak, K. et al. RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues. Science 364, eaaw0726 (2019). (PMID: 31171663735042310.1126/science.aaw0726) ; Lee-Six, H. et al. The landscape of somatic mutation in normal colorectal epithelial cells. Nature 574, 532–537 (2019). (PMID: 3164573010.1038/s41586-019-1672-7) ; Brunner, S. F. et al. Somatic mutations and clonal dynamics in healthy and cirrhotic human liver. Nature 574, 538–542 (2019). (PMID: 31645727683789110.1038/s41586-019-1670-9) ; Li, R. et al. Macroscopic somatic clonal expansion in morphologically normal human urothelium. Science 370, 82–89 (2020). (PMID: 3300451510.1126/science.aba7300) ; Welch, J. S. et al. The origin and evolution of mutations in acute myeloid leukemia. Cell 150, 264–278 (2012). (PMID: 22817890340756310.1016/j.cell.2012.06.023) ; Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016). (PMID: 27698416553622310.1038/nature19768) ; Franco, I. et al. Somatic mutagenesis in satellite cells associates with human skeletal muscle aging. Nat. Commun. 9, 800 (2018). (PMID: 29476074582495710.1038/s41467-018-03244-6) ; Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015). (PMID: 26430121466447710.1126/science.aab1785) ; Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018). (PMID: 2921758410.1126/science.aao4426) ; Brazhnik, K. et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci. Adv. 6, eaax2659 (2020). (PMID: 32064334699420910.1126/sciadv.aax2659) ; Xing, D., Tan, L., Chang, C. H., Li, H. & Xie, X. S. Accurate SNV detection in single cells by transposon-based whole-genome amplification of complementary strands. Proc. Natl Acad. Sci. USA 118, e2013106118 (2021). (PMID: 33593904792368010.1073/pnas.2013106118) ; Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294.e20 (2019). (PMID: 30849372642481910.1016/j.cell.2019.02.012) ; Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018). (PMID: 29576615648543010.1038/nrg.2017.117) ; Schmitt, M. W. et al. Detection of ultra-rare mutations by next-generation sequencing. Proc. Natl Acad. Sci. USA 109, 14508–14513 (2012). (PMID: 22853953343789610.1073/pnas.1208715109) ; Kennedy, S. R. et al. Detecting ultralow-frequency mutations by duplex sequencing. Nat. Protocols 9, 2586–2606 (2014). (PMID: 2529915610.1038/nprot.2014.170) ; Hoang, M. L. et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. Proc. Natl Acad. Sci. USA 113, 9846–9851 (2016). (PMID: 27528664502463910.1073/pnas.1607794113) ; You, X. et al. Detection of genome-wide low-frequency mutations with paired-end and complementary consensus sequencing (PECC-seq) revealed end-repair-derived artifacts as residual errors. Arch. Toxicol. 94, 3475–3485 (2020). (PMID: 3273751610.1007/s00204-020-02832-0) ; Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 41, e67 (2013). (PMID: 23303777361673410.1093/nar/gks1443) ; Kong, A. et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012). (PMID: 22914163354842710.1038/nature11396) ; Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016). (PMID: 2665684610.1038/ng.3469) ; Wyles, S. P., Brandt, E. B. & Nelson, T. J. Stem cells: the pursuit of genomic stability. Int. J. Mol. Sci. 15, 20948–20967 (2014). (PMID: 25405730426420510.3390/ijms151120948) ; Lee-Six, H. et al. Population dynamics of normal human blood inferred from somatic mutations. Nature 561, 473–478 (2018). (PMID: 30185910616304010.1038/s41586-018-0497-0) ; Nicholson, A. M. et al. Fixation and spread of somatic mutations in adult human colonic epithelium. Cell Stem Cell 22, 909–918.e8 (2018). (PMID: 29779891598905810.1016/j.stem.2018.04.020) ; Pleguezuelos-Manzano, C. et al. Mutational signature in colorectal cancer caused by genotoxic pks + E. coli. Nature 580, 269–273 (2020). (PMID: 32106218814289810.1038/s41586-020-2080-8) ; Poduri, A., Evrony, G. D., Cai, X. & Walsh, C. A. Somatic mutation, genomic variation, and neurological disease. Science 341, 1237758 (2013). (PMID: 23828942390995410.1126/science.1237758) ; Alexandrov, L. B. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020). (PMID: 32025018705421310.1038/s41586-020-1943-3) ; Rheinbay, E. et al. Analyses of non-coding somatic drivers in 2,658 cancer whole genomes. Nature 578, 102–111 (2020). (PMID: 32025015705421410.1038/s41586-020-1965-x) ; Gabella, G. Cells of visceral smooth muscles. J. Smooth Muscle Res. 48, 65–95 (2012). (PMID: 2309573610.1540/jsmr.48.65) ; Yoshida, K. et al. Tobacco smoking and somatic mutations in human bronchial epithelium. Nature 578, 266–272 (2020). (PMID: 31996850702151110.1038/s41586-020-1961-1) ; Lawson, A. R. J. et al. Extensive heterogeneity in somatic mutation and selection in the human bladder. Science 370, 75–82 (2020). (PMID: 3300451410.1126/science.aba8347) ; Gao, Z., Wyman, M. J., Sella, G. & Przeworski, M. Interpreting the dependence of mutation rates on age and time. PLoS Biol. 14, e1002355 (2016). (PMID: 26761240471194710.1371/journal.pbio.1002355) ; Kucab, J. E. et al. A compendium of mutational signatures of environmental agents. Cell 177, 821–836 (2019). (PMID: 30982602650633610.1016/j.cell.2019.03.001) ; Matsumura, S. et al. Genome-wide somatic mutation analysis via Hawk-seq™ reveals mutation profiles associated with chemical mutagens. Arch. Toxicol. 93, 2689–2701 (2019). (PMID: 3145184510.1007/s00204-019-02541-3) ; Ellis, P. et al. Reliable detection of somatic mutations in solid tissues by laser-capture microdissection and low-input DNA sequencing. Nat. Protocols 16, 841–871 (2021). (PMID: 3331869110.1038/s41596-020-00437-6) ; Olafsson, S. et al. Somatic evolution in non-neoplastic IBD-affected colon. Cell 182, 672–684 (2020). (PMID: 32697969742732510.1016/j.cell.2020.06.036) ; Krishnaswami, S. R. et al. Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat. Protocols 11, 499–524 (2016). (PMID: 2689067910.1038/nprot.2016.015) ; Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013). ; Tischler, G. & Leonard, S. biobambam: tools for read pair collation based algorithms on BAM files. Source Code Biol. Med. 9, 13 (2014). (PMID: 407559610.1186/1751-0473-9-13) ; Gerstung, M. et al. Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nat. Commun. 3, 811 (2012). (PMID: 2254984010.1038/ncomms1814) ; Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020). (PMID: 32461654733419710.1038/s41586-020-2308-7) ; The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015). (PMID: 10.1038/nature15393) ; Zhang, F. et al. Ancestry-agnostic estimation of DNA sample contamination from sequence reads. Genome Res. 30, 185–194 (2020). (PMID: 31980570705053010.1101/gr.246934.118) ; Benjamini, Y. & Speed, T. P. Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res. 40, e72 (2012). (PMID: 22323520337885810.1093/nar/gks001) ; Robinson, P. S. et al. Elevated somatic mutation burdens in normal human cells due to defective DNA polymerases. Preprint at https://doi.org/10.1101/2020.06.23.167668 (2020). ; Jones, D. et al. cgpCaVEManWrapper: simple execution of CaVEMan in order to detect somatic single nucleotide variants in NGS data. Curr. Protoc. Bioinformatics 56, 15.10.1–15.10.18 (2016). (PMID: 10.1002/cpbi.20) ; Raine, K. M. et al. Cgppindel: identifying somatically acquired insertion and deletion events from paired end sequencing. Curr Protoc Bioinformatics 52, 15.17.1–15.17.12 (2015). (PMID: 10.1002/0471250953.bi1507s52) ; Hoang, D. T. et al. MPBoot: fast phylogenetic maximum parsimony tree inference and bootstrap approximation. BMC Evol. Biol. 18, 11 (2018). (PMID: 29390973579650510.1186/s12862-018-1131-3) ; Gori, K. & Baez-Ortega, A. sigfit: flexible Bayesian inference of mutational signatures. Preprint at https://doi.org/10.1101/372896 (2020). ; Lensing S. V. et al. Somatic mutation landscapes at single-molecule resolution. Protocol Exchange https://doi.org/10.21203/rs.3.pex-1298/v1 (2021). ; Lawrence, M. et al. Software for computing and annotating genomic ranges. PLOS Comput. Biol. 9, e1003118 (2013). (PMID: 23950696373845810.1371/journal.pcbi.1003118) ; Gerstung, M., Papaemmanuil, E. & Campbell, P. J. Subclonal variant calling with multiple samples and prior knowledge. Bioinformatics 30, 1198–1204 (2014). (PMID: 24443148399812310.1093/bioinformatics/btt750) ; Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009). (PMID: 19505943272300210.1093/bioinformatics/btp352) ; Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011). (PMID: 21903627319857510.1093/bioinformatics/btr509) ; Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033) ; Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015). (PMID: 25693563453001010.1038/nature14248)
  • Grant Information: MC_PC_17230 United Kingdom MRC_ Medical Research Council; 107630/Z/15/Z United Kingdom WT_ Wellcome Trust; 203151/Z/16/Z United Kingdom WT_ Wellcome Trust; 21777 United Kingdom CRUK_ Cancer Research UK; 27114 United Kingdom CRUK_ Cancer Research UK; 15008 United Kingdom LLR_ Blood Cancer UK; C66259/A27114 United Kingdom WT_ Wellcome Trust
  • Entry Date(s): Date Created: 20210429 Date Completed: 20210521 Latest Revision: 20240210
  • Update Code: 20240210

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -