Zum Hauptinhalt springen

AMPK in the gut-liver-brain axis and its influence on OP rats in an HSHF intake and WTD rat model.

Casagrande, BP ; Pisani, LP ; et al.
In: Pflugers Archiv : European journal of physiology, Jg. 473 (2021-08-01), Heft 8, S. 1199-1211
Online academicJournal

Titel:
AMPK in the gut-liver-brain axis and its influence on OP rats in an HSHF intake and WTD rat model.
Autor/in / Beteiligte Person: Casagrande, BP ; Pisani, LP ; Estadella, D
Link:
Zeitschrift: Pflugers Archiv : European journal of physiology, Jg. 473 (2021-08-01), Heft 8, S. 1199-1211
Veröffentlichung: Berlin, New York, Springer., 2021
Medientyp: academicJournal
ISSN: 1432-2013 (electronic)
DOI: 10.1007/s00424-021-02583-6
Schlagwort:
  • Animals
  • Diet, High-Fat adverse effects
  • Dietary Sugars adverse effects
  • Male
  • Obesity etiology
  • Rats, Wistar
  • Rats
  • AMP-Activated Protein Kinases metabolism
  • Brain-Gut Axis
  • Colon enzymology
  • Hypothalamus enzymology
  • Liver enzymology
  • Obesity enzymology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Pflugers Arch] 2021 Aug; Vol. 473 (8), pp. 1199-1211. <i>Date of Electronic Publication: </i>2021 Jun 01.
  • MeSH Terms: Brain-Gut Axis* ; AMP-Activated Protein Kinases / *metabolism ; Colon / *enzymology ; Hypothalamus / *enzymology ; Liver / *enzymology ; Obesity / *enzymology ; Animals ; Diet, High-Fat / adverse effects ; Dietary Sugars / adverse effects ; Male ; Obesity / etiology ; Rats, Wistar ; Rats
  • References: Allerton TD, Primeaux SD (2016) High-fat diet differentially regulates metabolic parameters in obesity-resistant S5B/Pl rats and obesity-prone Osborne-Mendel rats. Can J Physiol Pharmacol 94:206–215. https://doi.org/10.1139/cjpp-2015-0141. (PMID: 10.1139/cjpp-2015-014126641537) ; Bassareo V, Di Chiara G (1997) Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 17:851–861. https://doi.org/10.1523/jneurosci.17-02-00851.1997. (PMID: 10.1523/jneurosci.17-02-00851.199789878066573251) ; Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22:4709–4719. https://doi.org/10.1523/jneurosci.22-11-04709.2002. (PMID: 10.1523/jneurosci.22-11-04709.2002120400786758788) ; Belegri E, Eggels L, Unmehopa UA, Mul JD, Boelen A, la Fleur SE (2018) The effects of overnight nutrient intake on hypothalamic inflammation in a free-choice diet-induced obesity rat model. Appetite 120:527–535. https://doi.org/10.1016/j.appet.2017.10.006. (PMID: 10.1016/j.appet.2017.10.00628988760) ; Bortolin RC, Vargas AR, Gasparotto J, Chaves PR, Schnorr CE, Martinello KB, Silveira AK, Rabelo TK, Gelain DP, Moreira JCF (2018) A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes 42:525–534. https://doi.org/10.1038/ijo.2017.225. (PMID: 10.1038/ijo.2017.225) ; Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. https://doi.org/10.1016/0003-2697(76)90527-3. (PMID: 10.1016/0003-2697(76)90527-3942051942051) ; Carlin J, Hill-Smith TE, Lucki I, Reyes TM (2013) Reversal of dopamine system dysfunction in response to high-fat diet. Obesity 21:2513–2521. https://doi.org/10.1002/oby.20374. (PMID: 10.1002/oby.2037423512420) ; Carlin JL, McKee SE, Hill-Smith T, Grissom NM, George R, Lucki I, Reyes TM (2016) Removal of high-fat diet after chronic exposure drives binge behavior and dopaminergic dysregulation in female mice. Neuroscience 326:170–179. https://doi.org/10.1016/j.neuroscience.2016.04.002. (PMID: 10.1016/j.neuroscience.2016.04.00227063418) ; Casagrande BP, Estadella D (2020) Withdrawing from obesogenic diets: benefits and barriers in the short- and long-term in rodent models. Am J Physiol Endocrinol Metab 319:E485–E493. https://doi.org/10.1152/ajpendo.00174.2020. (PMID: 10.1152/ajpendo.00174.202032663098) ; Casagrande BP, Gomes MFP, Moura EOC, Santos ACC, Kubota MC, Ribeiro DA, Pisani LP, Medeiros A, Estadella D (2019) Age-dependent hepatic alterations induced by a high-fat high-fructose diet. Inflamm Res 68:359–368. https://doi.org/10.1007/s00011-019-01223-1. (PMID: 10.1007/s00011-019-01223-130874869) ; Casagrande BP, de Souza DV, Ribeiro DA, Medeiros A, Pisani LP, Estadella D (2020) Hepatic inflammation precedes steatosis and is mediated by visceral fat accumulation. J Endocrinol 245:369–380. https://doi.org/10.1530/JOE-20-0073. (PMID: 10.1530/JOE-20-007332217808) ; Casagrande BP, Souza DV de, Pisani LP, Estadella D (2021) Dataset for “Hepatic inflammation precedes steatosis and is mediated by visceral fat accumulation.” Mendeley Data Version 1. https://doi.org/10.17632/g2wk65v7v9.1. ; Castro H, Pomar CA, Picó C, Sánchez J, Palou A (2015) Cafeteria diet overfeeding in young male rats impairs the adaptive response to fed/fasted conditions and increases adiposity independent of body weight. Int J Obes 39:430–437. https://doi.org/10.1038/ijo.2014.125. (PMID: 10.1038/ijo.2014.125) ; Cesar HC, Pisani LP (2017) Fatty-acid-mediated hypothalamic inflammation and epigenetic programming. J Nutr Biochem 42:1–5. https://doi.org/10.1016/j.jnutbio.2016.08.008. (PMID: 10.1016/j.jnutbio.2016.08.00827732903) ; Chiba S, Numakawa T, Ninomiya M, Richards MC, Wakabayashi C, Kunugi H (2012) Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 39:112–119. https://doi.org/10.1016/j.pnpbp.2012.05.018. (PMID: 10.1016/j.pnpbp.2012.05.01822664354) ; Coccurello R, Maccarrone M (2018) Hedonic eating and the “delicious circle”: from lipid-derived mediators to brain dopamine and back. Front Neurosci 12:1–20. https://doi.org/10.3389/fnins.2018.00271. (PMID: 10.3389/fnins.2018.00271) ; Crescenzo R, Bianco F, Coppola P, Mazzoli A, Tussellino M, Carotenuto R, Liverini G, Iossa S (2014) Fructose supplementation worsens the deleterious effects of short-term high-fat feeding on hepatic steatosis and lipid metabolism in adult rats. Exp Physiol 99:1203–1213. https://doi.org/10.1113/expphysiol.2014.079632. (PMID: 10.1113/expphysiol.2014.07963224972835) ; Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK, Bultman SJ (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–526. https://doi.org/10.1016/j.cmet.2011.02.018. (PMID: 10.1016/j.cmet.2011.02.018215313343099420) ; Duca FA, Katebzadeh S, Covasa M (2015) Impaired GLP-1 signaling contributes to reduced sensitivity to duodenal nutrients in obesity-prone rats during high-fat feeding. Obesity 23:2260–2268. https://doi.org/10.1002/oby.21231. (PMID: 10.1002/oby.2123126530935) ; Espitia-Bautista E, Escobar C (2019) Fat rather than sugar diet leads to binge-type eating, anticipation, effort behavior and activation of the corticolimbic system. Nutr Neurosci 0:1–12. https://doi.org/10.1080/1028415X.2019.1651104. ; Estadella D, Oyama LM, Bueno AA, Habitante CA, Souza GI, Ribeiro EB, Motoyama CS, Oller do Nascimento CM (2011) A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats. Lipids Health Dis 10:168. https://doi.org/10.1186/1476-511X-10-168. (PMID: 10.1186/1476-511X-10-168219431993198928) ; Giles ED, Jackman MR, MacLean PS (2016) Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front Nutr 3:1–13. https://doi.org/10.3389/fnut.2016.00050. (PMID: 10.3389/fnut.2016.00050) ; Gomes AC, Hoffmann C, Mota JF (2018) The human gut microbiota: metabolism and perspective in obesity. Gut Microbes 1–18. https://doi.org/10.1080/19490976.2018.1465157. ; Hamilton MK, Boudry G, Lemay DG, Raybould HE (2015) Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol 308:G840–G851. https://doi.org/10.1152/ajpgi.00029.2015. (PMID: 10.1152/ajpgi.00029.2015257473514437018) ; Huynh MKQ, Kinyua AW, Yang DJ, Kim KW (2016) Hypothalamic AMPK as a regulator of energy homeostasis. Neural Plast 2016. https://doi.org/10.1155/2016/2754078. ; Iemolo A, Blasio A, St Cyr SA, Jiang F, Rice KC, Sabino V, Cottone P (2013) CRF-CRF 1 receptor system in the central and basolateral nuclei of the amygdala differentially mediates excessive eating of palatable food. Neuropsychopharmacology 38:2456–2466. https://doi.org/10.1038/npp.2013.147. (PMID: 10.1038/npp.2013.147237482253799065) ; Jackman MR, MacLean PS, Bessesen DH (2010) Energy expenditure in obesity-prone and obesity-resistant rats before and after the introduction of a high-fat diet. Am J Physiol Regul Integr Comp Physiol 299:1097–1105. https://doi.org/10.1152/ajpregu.00549.2009. (PMID: 10.1152/ajpregu.00549.2009) ; Jamar G, Ribeiro DA, Pisani LP (2020) High-fat or high-sugar diets as trigger inflammation in the microbiota-gut-brain axis. Crit Rev Food Sci Nutr 0:1–19. https://doi.org/10.1080/10408398.2020.1747046. ; Jeon SM (2016) Regulation and function of AMPK in physiology and diseases. Exp Mol Med 48:e245. https://doi.org/10.1038/emm.2016.81. (PMID: 10.1038/emm.2016.81274167814973318) ; Jiang S, Zhai H, Li D, Huang J, Zhang H, Li Z, Zhang W, Xu G (2016) AMPK-dependent regulation of GLP1 expression in L-like cells. J Mol Endocrinol 57:151–160. https://doi.org/10.1530/JME-16-0099. (PMID: 10.1530/JME-16-009927493247) ; Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the arrive guidelines for reporting animal research. PLoS Biol 8:6–10. https://doi.org/10.1371/journal.pbio.1000412. (PMID: 10.1371/journal.pbio.1000412) ; Lalanza JF, Caimari A, del Bas JM, Torregrosa D, Cigarroa I, Pallàs M, Capdevila L, Arola L, Escorihuela RM (2014) Effects of a post-weaning cafeteria diet in young rats: metabolic syndrome, reduced activity and low anxiety-like behaviour. PLoS ONE 9:e85049. https://doi.org/10.1371/journal.pone.0085049. (PMID: 10.1371/journal.pone.0085049244826783895047) ; Liddle RA (2019) Neuropods. Cell Mol Gastroenterol Hepatol 7:739–747. https://doi.org/10.1016/j.jcmgh.2019.01.006. (PMID: 10.1016/j.jcmgh.2019.01.006307107266463090) ; Lin SC, Hardie DG (2018) AMPK: sensing glucose as well as cellular energy status. Cell Metab 27:299–313. https://doi.org/10.1016/j.cmet.2017.10.009. (PMID: 10.1016/j.cmet.2017.10.00929153408) ; Liu N, Wang Y, An AY, Banker C, Qian Y, O’Donnell JM (2020) Single housing-induced effects on cognitive impairment and depression-like behavior in male and female mice involve neuroplasticity-related signaling. Eur J Neurosci 52:2694–2704. https://doi.org/10.1111/ejn.14565. (PMID: 10.1111/ejn.1456531471985) ; López M (2018) Hypothalamic AMPK and energy balance. Eur J Clin Invest 48:e12996. https://doi.org/10.1111/eci.12996. (PMID: 10.1111/eci.12996299995216175178) ; Maciejewska D, Skonieczna-Zydecka K, Lukomska A, Gutowska I, Dec K, Kupnicka P, Palma J, Pilutin A, Marlicz W, Stachowska E (2018) The short chain fatty acids and lipopolysaccharides status in sprague-dawley rats fed with high-fat and high-cholesterol diet. J Physiol Pharmacol 69:205–210. https://doi.org/10.26402/jpp.2018.2.05. (PMID: 10.26402/jpp.2018.2.05) ; Martire SI, Maniam J, South T, Holmes N, Westbrook RF, Morris MJ (2014) Extended exposure to a palatable cafeteria diet alters gene expression in brain regions implicated in reward, and withdrawal from this diet alters gene expression in brain regions associated with stress. Behav Brain Res 265:132–141. https://doi.org/10.1016/j.bbr.2014.02.027. (PMID: 10.1016/j.bbr.2014.02.02724583192) ; Mathew P, Thoppil D (2021) Hypoglycemia. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). Available from:  https://www.ncbi.nlm.nih.gov/books/NBK534841/. ; Matias AM, Coelho PM, Marques VB, dos Santos L, de Assis ALEM, Nogueira BV, Lima-Leopoldo AP, Leopoldo AS (2020) Hypercaloric diet models do not develop heart failure, but the excess sucrose promotes contractility dysfunction. PLoS ONE 15:1–14. https://doi.org/10.1371/journal.pone.0228860. (PMID: 10.1371/journal.pone.0228860) ; Matikainen-Ankney BA, Ali MA, Miyazaki NL, Fry SA, Licholai JA, Kravitz AV (2020) Weight loss after obesity is associated with increased food motivation and faster weight regain in mice. Obesity 28:851–856. https://doi.org/10.1002/oby.22758. (PMID: 10.1002/oby.2275832133782) ; Møller LLV, Sylow L, Gøtzsche CR, Serup AK, Christiansen SH, Weikop P, Kiens B, Woldbye DPD, Richter EA (2016) Decreased spontaneous activity in AMPK α2 muscle specific kinase dead mice is not caused by changes in brain dopamine metabolism. Physiol Behav 164:300–305. https://doi.org/10.1016/j.physbeh.2016.06.010. (PMID: 10.1016/j.physbeh.2016.06.01027306083) ; Montoya AK, Hayes AF (2017) Two-condition within-participant statistical mediation analysis: a path-analytic framework. Psychol Methods 22:6–27. https://doi.org/10.1037/met0000086. (PMID: 10.1037/met000008627362267) ; Moore JB, Boesch C (2019) Getting energy balance right in an obesogenic world. Proc Nutr Soc 78:259–261. https://doi.org/10.1017/S0029665118002720. (PMID: 10.1017/S002966511800272031385568) ; Morton GJ, Cummings DE, Baskin DG, Barsh GS, Schwartz MW (2006) Central nervous system control of food intake and body weight. Nature 443:289–295. https://doi.org/10.1038/nature05026. (PMID: 10.1038/nature0502616988703) ; Oh TS, Cho H, Cho JH, Yu SW, Kim EK (2016) Hypothalamic AMPK-induced autophagy increases food intake by regulating NPY and POMC expression. Autophagy 12:2009–2025. https://doi.org/10.1080/15548627.2016.1215382. (PMID: 10.1080/15548627.2016.1215382275330785103348) ; Pagliassotti MJ, Knobel SM, Shahrokhi KA, Manzo AM, Hill JO (1994) Time course of adaptation to a high-fat diet in obesity-resistant and obesity-prone rats. Am J Physiol Regul Integr Comp Physiol 267:R659–R664. https://doi.org/10.1152/ajpregu.1994.267.3.R659. (PMID: 10.1152/ajpregu.1994.267.3.R659) ; Shang Y, Khafipour E, Derakhshani H, Sarna LK, Woo CW, Siow YL, Karmin O (2017) Short term high fat diet induces obesity-enhancing changes in mouse gut microbiota that are partially reversed by cessation of the high fat diet. Lipids 52:499–511. https://doi.org/10.1007/s11745-017-4253-2. (PMID: 10.1007/s11745-017-4253-228429150) ; Sharma S, Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 37:382–389. https://doi.org/10.1038/ijo.2012.48. (PMID: 10.1038/ijo.2012.48) ; Sharma S, Fernandes MF, Fulton S (2013) Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes 37:1183–1191. https://doi.org/10.1038/ijo.2012.197. (PMID: 10.1038/ijo.2012.197) ; Soto M, Chaumontet C, Mauduit CD, Fromentin G, Palme R, Tomé D, Even P (2016) Intermittent access to a sucrose solution impairs metabolism in obesity-prone but not obesity-resistant mice. Physiol Behav 154:175–183. https://doi.org/10.1016/j.physbeh.2015.11.012. (PMID: 10.1016/j.physbeh.2015.11.01226596703) ; South T, Westbrook F, Morris MJ (2012) Neurological and stress related effects of shifting obese rats from a palatable diet to chow and lean rats from chow to a palatable diet. Physiol Behav 105:1052–1057. https://doi.org/10.1016/j.physbeh.2011.11.019. (PMID: 10.1016/j.physbeh.2011.11.01922155008) ; South T, Holmes NM, Martire SI, Westbrook RF, Morris MJ (2014) Rats eat a cafeteria-style diet to excess but eat smaller amounts and less frequently when tested with chow. PLoS ONE 9:e93506. https://doi.org/10.1371/journal.pone.0093506. (PMID: 10.1371/journal.pone.0093506247516103994000) ; Souza GFP, Solon C, Nascimento LF, De-Lima-Junior JC, Nogueira G, Moura R, Rocha GZ, Fioravante M, Bobbo V, Morari J, Razolli D, Araujo EP, Velloso LA (2016) Defective regulation of POMC precedes hypothalamic inflammation in diet-induced obesity. Sci Rep 6:1–9. https://doi.org/10.1038/srep29290. (PMID: 10.1038/srep29290) ; Sun H, Yan J, Sun B, Song L, Yan J (2017) Taste sensitivity to sucrose is lower in outbred Sprague-Dawley phenotypic obesity-prone rats than obesity-resistant rats. Biochem Biophys Res Commun 489:155–163. https://doi.org/10.1016/j.bbrc.2017.05.117. (PMID: 10.1016/j.bbrc.2017.05.11728549583) ; Sun X, Yang Q, Rogers CJ, Du M, Zhu MJ (2017) AMPK improves gut epithelial differentiation and barrier function via regulating Cdx2 expression. Cell Death Differ 24:819–831. https://doi.org/10.1038/cdd.2017.14. (PMID: 10.1038/cdd.2017.14282343585423107) ; Teske JA, Kotz CM (2009) Effect of acute and chronic caloric restriction and metabolic glucoprivation on spontaneous physical activity in obesity-prone and obesity-resistant rats. Am J Physiol Regul Integr Comp Physiol 297:176–184. https://doi.org/10.1152/ajpregu.90866.2008. (PMID: 10.1152/ajpregu.90866.2008) ; WHO (2020) Obesity and overweight. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight . Accessed 30 Mar 2021. ; Williams RD, Dickey JW (1969) Physiology of the colon and rectum. Am J Surg 117:849–853. https://doi.org/10.1016/0002-9610(69)90074-9. (PMID: 10.1016/0002-9610(69)90074-95794867) ; Winder WW, Hardie DG (1999) AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am J Physiol Endocrinol Metab 277:E1–E10. https://doi.org/10.1152/ajpendo.1999.277.1.E1. (PMID: 10.1152/ajpendo.1999.277.1.E1) ; Xue B, Kahn BB (2006) AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J Physiol 574:73–83. https://doi.org/10.1113/jphysiol.2006.113217. (PMID: 10.1113/jphysiol.2006.113217167096291817809)
  • Contributed Indexing: Keywords: AMPK; Colon; Hypothalamus; Liver; Withdrawal
  • Substance Nomenclature: 0 (Dietary Sugars) ; EC 2.7.11.31 (AMP-Activated Protein Kinases)
  • Entry Date(s): Date Created: 20210602 Date Completed: 20220203 Latest Revision: 20240226
  • Update Code: 20240226

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -