Zum Hauptinhalt springen

Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan.

Chiang, LC ; Liao, CJ ; et al.
In: Environmental monitoring and assessment, Jg. 193 (2021-07-27), Heft 8, S. 520
Online academicJournal

Titel:
Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan.
Autor/in / Beteiligte Person: Chiang, LC ; Liao, CJ ; Lu, CM ; Wang, YC
Link:
Zeitschrift: Environmental monitoring and assessment, Jg. 193 (2021-07-27), Heft 8, S. 520
Veröffentlichung: 1998- : Dordrecht : Springer ; <i>Original Publication</i>: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-, 2021
Medientyp: academicJournal
ISSN: 1573-2959 (electronic)
DOI: 10.1007/s10661-021-09283-9
Schlagwort:
  • Environmental Monitoring
  • Models, Theoretical
  • Rivers
  • Taiwan
  • Soil
  • Water
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Environ Monit Assess] 2021 Jul 27; Vol. 193 (8), pp. 520. <i>Date of Electronic Publication: </i>2021 Jul 27.
  • MeSH Terms: Soil* ; Water* ; Environmental Monitoring ; Models, Theoretical ; Rivers ; Taiwan
  • References: Abbaspour, K. C. (2015). SWAT-CUP: SWAT calibration and uncertainty programs-a user manual. EAWAG. ; Abbaspour, K. C., Rouholahnejad, E., Vaghefi, S., Srinivasan, R., Yang, H., & Klove, B. (2015). A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524, 733–752. (PMID: 10.1016/j.jhydrol.2015.03.027) ; Arnold, J. G., Bieger, K., White, M. J., Srinivasan, R., Dunbar, J. A., & Allen, P. M. (2018). Use of decision tables to simulate management in SWAT+. Water, 10(6), 713. https://doi.org/10.3390/w10060713. (PMID: 10.3390/w10060713) ; Arnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., Santhi, C., Harmel, R. D., van Griensven, A., Van Liew, M. W., Kannan, N., & Jha, M. K. (2012). SWAT: Model use, calibration, and validation. American Society of Agricultural and Biological Engineers, 55(4), 1491–1508. ; Bieger, K., Hörmann, G., & Fohrer, N. (2014). Detail spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China. Hydrology Sciences Journal, 60(5), 784–800. ; Chan, H.-C., Chang, C.-C., Chen, S.-C., Wei, Y.-S., Wang, Z.-B., & Lee, T.-S. (2015). Investigation and analysis of the characteristics of shallow landslides in mountainous areas of Taiwan. Journal of Chinese Soil and Water Conservation, 46(1), 19–28. ; Chang, C.-T., Harrison, J. F., & Huang, Y.-C. (2015). Modeling typhoon-induced alterations on river sediment transport and turbidity based on dynamic landslide inventories: Gaoping river basin, Taiwan. Water, 7, 6910–6930. (PMID: 10.3390/w7126666) ; Chen, W., & Thomas, K. (2020). Revised SEDD (RSEDD) Model for sediment delivery processes at the basin scale. Sustainability, 12(12), 4928. https://doi.org/10.3390/su12124928. (PMID: 10.3390/su12124928) ; Cheng, C. L. & Liao, W. J. (2011). Current situation and sustainability of water resource in Taiwan. Asian Water Saving Council. ; Chiang, L. C., Wang, Y. C., & Liao, C. J. (2019). Spatiotemporal variation of sediment export from multiple Taiwan watersheds. International Journal of Environmental Research and Public Health, 16(9), 1610. https://doi.org/10.3390/ijerph16091610. (PMID: 10.3390/ijerph16091610) ; Chou, W. C., Lin, W. T., & Lin, C. Y. (2009). Vegetation recovery patterns assessment at landslides caused by catastrophic earthquake: A case study in central Taiwan. Environmental Monitoring and Assessment, 152, 245–257. (PMID: 10.1007/s10661-008-0312-8) ; Cibin, R., Chaubey, I., Helmers, M., Sudheer, K. P., White, M. J., & Arnold, J. G. (2018). An improved representation of vegetative filter strips in SWAT model. Transactions of the ASABE, 61(3), 1017–1024. (PMID: 10.13031/trans.12661) ; Gassman P. W., Reyes, M. R., Green, C. H., & Arnold, J. G. (2007). The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Transactions of the ASABE, 50(4), 1211–1250. ; Guzha, A. C., Rufino, M. C., Okoth, S., Jacobs, S., & Nóbrega, R. L. B. (2018). Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology, 15, 49–67. ; Huang, Z., Lin, B., Sun, J., Luozhu, N., Da, P., & Dawa, J. (2020). Suspended sediment transport responses to increasing human activities in a high-altitude river: A case study in a typical sub-catchment of the Yarlung Tsangpo river. Water, 12(4), 952. https://doi.org/10.3390/w12040952. (PMID: 10.3390/w12040952) ; Kao, S. J., & Milliman, J. D. (2008). Water and sediment discharge from small mountain river, Taiwan: The role of lithology, episodic event and human activities. The Journal of Geology, 116, 431–448. (PMID: 10.1086/590921) ; Lane, L. J. (1983). Chapter 19: Transmission losses. 19-1 – 19-21. In Soil Conservation Service. National engineering handbook, section 4: Hydrology. U.S. Government Printing Office, Washington, D.C. ; Lee, T. Y., Huang, J. C., Lee, J. Y., Jien, S. H., Zehetner, F., & Kao, S. J. (2015). Magnified sediment export of small mountainous rivers in Taiwan: Chain reactions from increased rainfall intensity under global warming. PLoS One, 10(9), e0138283. https://doi.org/10.1371/journal.pone.0138283. ; Lu, C. M., & Chiang, L. C. (2019). Assessment of sediment transport functions with the modified SWAT-Twn model for a Taiwanese small mountainous watershed. Water, 11(9), 1749. https://doi.org/10.3390/w11091749. (PMID: 10.3390/w11091749) ; McCool, D. K., Brown, L. C., Foster, G. R., Mutchler, C. K., & Meyer, L. D. (1987). Revised slope steepness factor for the Universal Soil Loss Equation. Transactions of the ASABE, 30, 1387–1396. ; Milliman, J. D., & Farnsworth, K. L. (2011). River discharge to the coastal ocean: A global synthesis. Oceanography, 24(4), 143–144. (PMID: 10.5670/oceanog.2011.108) ; Milliman, J. D., & Meade, R. H. (1983). World-wide delivery of sediment to the oceans. Journal of Geology, 91(1), 1–21. (PMID: 10.1086/628741) ; Milliman, J. D., & Syvitski, J. P. M. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. Journal of Geology, 100(5), 525–544. (PMID: 10.1086/629606) ; Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Haemel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic qualification of accuracy in watershed simulation. Transaction of ASABE, 50, 282–290. ; Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation. Texas Water Resources Institute Technical Report No. 406. ; Nkiaka, E., Nawaz, N. R., & Lovett, J. C. (2018). Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: A case study in the Logone catchment, Lake Chad basin. Stochastic Environmental Research and Risk Assessment, 32(6), 1665–1682. (PMID: 10.1007/s00477-017-1466-0) ; Orlińska-Woźniak, P., Szalińska, E., & Wilk, P. (2020). Do land use changes balance out sediment yields under climate change predictions on the sub-basin scale? The Carpathian Basin as an Example. Water, 12(5), 1499. https://doi.org/10.3390/w12051499. (PMID: 10.3390/w12051499) ; Rubinato, M., Luo, M., Zheng, X., Pu, J. H., & Shao, S. (2020). Advances in modelling and prediction on the impact of human activities and extreme events on environments. Water, 12(6), 1768. https://doi.org/10.3390/w12061768. (PMID: 10.3390/w12061768) ; Santhi, C., Arnold, J. G., Williams, J. R., Dugas, W. A., Srinivasan, R., & Hauck, L. M. (2001). Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 37(5), 1169–1188. (PMID: 10.1111/j.1752-1688.2001.tb03630.x) ; Shu, A., Duan, G., Rubinato, M., Tian, L., Wang, M., & Wang, S. (2019). An experimental study on mechanisms for sediment transformation due to riverbank collapse. Water, 11(3), 529. https://doi.org/10.3390/w11030529. (PMID: 10.3390/w11030529) ; Sung, J. H., & Liaw, S. C. (2018). Application of trend analysis to explore hydrological change under climate change in the Taimali stream basin. Journal of Geographical Research, 68, 49–71. ; Tomoyasu, S., Katsuya, O., Hisashi, M., Tatsuo, N., & Masahiko, S. (1995). Statistical rainfall risk estimating method for a deep collapse of a cut slope. Soils and Foundations, 35(4), 37–48. (PMID: 10.3208/sandf.35.4_37) ; Van Liew, M. W., Arnold, J. G., & Garbrecht, J. D. (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Transactions of ASAE, 46(6), 1539–1551. (PMID: 10.13031/2013.15643) ; Wei, W., Chen, L., Fu, B., Huang, Z., Wu, D., & Gui, L. (2007). The effect of land uses and rainfall regimes on runoff and soil erosion in the semi-arid loess hilly area, China. Journal of Hydrology, 335, 247–258. (PMID: 10.1016/j.jhydrol.2006.11.016) ; Williams, J. R. (1975). Sediment yield prediction with Universal Equation using runoff equation. Present and Prospective Technology for Predicting Sediment Yields and Sources; USA Department of Agriculture: New Orleans (pp. 244–252). LA. ; Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: A guide to conservation planning. Science, US Department of Agriculture Handbook, No. 537, Washington DC. ; Zeng, S., Zhan, C., Sun, F., Du, H., & Wang, F. (2015). Effects of climate change and human activities on surface runoff in the Luan River basin. Advances in Meteorology, 6, 1–12. (PMID: 10.1155/2015/740239) ; Zhang, X. C., & Nearing, M. A. (2005). Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. CATENA, 61(2–3), 185–195. (PMID: 10.1016/j.catena.2005.03.009) ; Zhang, Y. Y., Xia, J., Chen, J. F., & Zhang, M. H. (2011). Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China. Environmental Monitoring and Assessment, 173, 409–430. (PMID: 10.1007/s10661-010-1396-5)
  • Grant Information: 109-2621-M-005 -001 -MY3 Ministry of Science and Technology, Taiwan
  • Contributed Indexing: Keywords: Climate change; Landslide simulation; SWAT; Sediment load; Streamflow
  • Substance Nomenclature: 0 (Soil) ; 059QF0KO0R (Water)
  • Entry Date(s): Date Created: 20210727 Date Completed: 20210729 Latest Revision: 20210729
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -