Zum Hauptinhalt springen

Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior.

Markovic, T ; Pedersen, CE ; et al.
In: Nature neuroscience, Jg. 24 (2021-11-01), Heft 11, S. 1601-1613
Online academicJournal

Titel:
Pain induces adaptations in ventral tegmental area dopamine neurons to drive anhedonia-like behavior.
Autor/in / Beteiligte Person: Markovic, T ; Pedersen, CE ; Massaly, N ; Vachez, YM ; Ruyle, B ; Murphy, CA ; Abiraman, K ; Shin, JH ; Garcia, JJ ; Yoon, HJ ; Alvarez, VA ; Bruchas, MR ; Creed, MC ; Morón, JA
Link:
Zeitschrift: Nature neuroscience, Jg. 24 (2021-11-01), Heft 11, S. 1601-1613
Veröffentlichung: <2002->: New York, NY : Nature Publishing Group ; <i>Original Publication</i>: New York, NY : Nature America Inc., c1998-, 2021
Medientyp: academicJournal
ISSN: 1546-1726 (electronic)
DOI: 10.1038/s41593-021-00924-3
Schlagwort:
  • Animals
  • Conditioning, Operant physiology
  • Dopaminergic Neurons chemistry
  • Female
  • Male
  • Optogenetics methods
  • Pain genetics
  • Rats
  • Rats, Long-Evans
  • Rats, Transgenic
  • Ventral Tegmental Area chemistry
  • Adaptation, Physiological physiology
  • Anhedonia physiology
  • Dopaminergic Neurons metabolism
  • Pain metabolism
  • Ventral Tegmental Area metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Neurosci] 2021 Nov; Vol. 24 (11), pp. 1601-1613. <i>Date of Electronic Publication: </i>2021 Oct 18.
  • MeSH Terms: Adaptation, Physiological / *physiology ; Anhedonia / *physiology ; Dopaminergic Neurons / *metabolism ; Pain / *metabolism ; Ventral Tegmental Area / *metabolism ; Animals ; Conditioning, Operant / physiology ; Dopaminergic Neurons / chemistry ; Female ; Male ; Optogenetics / methods ; Pain / genetics ; Rats ; Rats, Long-Evans ; Rats, Transgenic ; Ventral Tegmental Area / chemistry
  • References: Leknes, S. & Tracey, I. A common neurobiology for pain and pleasure. Nat. Rev. Neurosci. 9, 314–320 (2008). (PMID: 1835440010.1038/nrn2333) ; Bair, M. J., Robinson, R. L., Katon, W. & Kroenke, K. Depression and pain comorbidity: a literature review. Arch. Intern. Med. 163, 2433–2445 (2003). (PMID: 1460978010.1001/archinte.163.20.2433) ; McWilliams, L. A., Goodwin, R. D. & Cox, B. J. Depression and anxiety associated with three pain conditions: results from a nationally representative sample. Pain 111, 77–83 (2004). (PMID: 1532781110.1016/j.pain.2004.06.002) ; Campbell, L. C., Clauw, D. J. & Keefe, F. J. Persistent pain and depression: a biopsychosocial perspective. Biol. Psychiatry 54, 399–409 (2003). (PMID: 1289311410.1016/S0006-3223(03)00545-6) ; Volkow, N. D. & McLellan, A. T. Opioid abuse in chronic pain—misconceptions and mitigation strategies. N. Engl. J. Med. 374, 1253–1263 (2016). (PMID: 2702891510.1056/NEJMra1507771) ; Apkarian, A. V. et al. Chronic pain patients are impaired on an emotional decision-making task. Pain 108, 129–136 (2004). (PMID: 1510951610.1016/j.pain.2003.12.015) ; Verdejo-García, A., López-Torrecillas, F., Calandre, E. P., Delgado-Rodríguez, A. & Bechara, A. Executive function and decision-making in women with fibromyalgia. Arch. Clin. Neuropsychol. 24, 113–122 (2009). (PMID: 1939536110.1093/arclin/acp014) ; Wiech, K. et al. Influence of prior information on pain involves biased perceptual decision-making. Curr. Biol. 24, R679–R681 (2014). (PMID: 25093555412316110.1016/j.cub.2014.06.022) ; Seixas, D., Palace, J. & Tracey, I. Chronic pain disrupts the reward circuitry in multiple sclerosis. Eur. J. Neurosci. 44, 1928–1934 (2016). (PMID: 27178661) ; Nestler, E. J. & Carlezon, W. A. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry 59, 1151–1159 (2006). (PMID: 1656689910.1016/j.biopsych.2005.09.018) ; Schultz, W. Behavioral dopamine signals. Trends Neurosci. 30, 203–210 (2007). (PMID: 1740030110.1016/j.tins.2007.03.007) ; Berridge, K. C. & Robinson, T. E. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res. Rev. 28, 309–369 (1998). (PMID: 985875610.1016/S0165-0173(98)00019-8) ; Bromberg-Martin, E. S., Matsumoto, M. & Hikosaka, O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010). (PMID: 21144997303299210.1016/j.neuron.2010.11.022) ; Martikainen, I. K. et al. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. J. Neurosci. 35, 9957–9965 (2015). (PMID: 26156996449524410.1523/JNEUROSCI.4605-14.2015) ; Scott, D. J., Heitzeg, M. M., Koeppe, R. A., Stohler, C. S. & Zubieta, J.-K. Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J. Neurosci. 26, 10789–10795 (2006). (PMID: 17050717667476410.1523/JNEUROSCI.2577-06.2006) ; Benarroch, E. E. Involvement of the nucleus accumbens and dopamine system in chronic pain. Neurology 87, 1720–1726 (2016). (PMID: 2765573710.1212/WNL.0000000000003243) ; Hipolito, L. et al. Inflammatory pain promotes increased opioid self-administration: role of dysregulated ventral tegmental area opioid receptors. J. Neurosci. 35, 12217–12231 (2015). (PMID: 26338332455678710.1523/JNEUROSCI.1053-15.2015) ; Taylor, A. M. W. et al. Microglia disrupt mesolimbic reward circuitry in chronic pain. J. Neurosci. 35, 8442–8450 (2015). (PMID: 26041913445255210.1523/JNEUROSCI.4036-14.2015) ; Massaly, N. et al. Pain-induced negative affect is mediated via recruitment of the nucleus accumbens kappa opioid system. Neuron 102, 564–573.e6 (2019). (PMID: 30878290650900110.1016/j.neuron.2019.02.029) ; Schwartz, N. et al. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science 345, 535–542 (2014). (PMID: 25082697421955510.1126/science.1253994) ; Matsui, A., Jarvie, B. C., Robinson, B. G., Hentges, S. T. & Williams, J. T. Separate GABA afferents to dopamine neurons mediate acute action of opioids, development of tolerance and expression of withdrawal. Neuron 82, 1346–1356 (2014). (PMID: 24857021407225610.1016/j.neuron.2014.04.030) ; Ozaki, S. et al. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain: implication of the reduction in µ-opioid receptor functions in the ventral tegmental area. J. Neurochem. 82, 1192–1198 (2002). (PMID: 1235876610.1046/j.1471-4159.2002.01071.x) ; Hodos, W. Progressive ratio as a measure of reward strength. Science 134, 943–944 (1961). (PMID: 1371487610.1126/science.134.3483.943) ; Brennan, K., Roberts, D. C., Anisman, H. & Merali, Z. Individual differences in sucrose consumption in the rat: motivational and neurochemical correlates of hedonia. Psychopharmacology (Berl.) 157, 269–276 (2001). (PMID: 10.1007/s002130100805) ; Kitai, S. T., Shepard, P. D., Callaway, J. C. & Scroggs, R. Afferent modulation of dopamine neuron firing patterns. Curr. Opin. Neurobiol. 9, 690–697 (1999). (PMID: 1060764910.1016/S0959-4388(99)00040-9) ; Neuhoff, H., Neu, A., Liss, B. & Roeper, J. I h channels contribute to the different functional properties of identified dopaminergic subpopulations in the midbrain. J. Neurosci. 22, 1290–1302 (2002). (PMID: 11850457675755810.1523/JNEUROSCI.22-04-01290.2002) ; Saddoris, M. P., Cacciapaglia, F., Wightman, R. M. & Carelli, R. M. Differential dopamine release dynamics in the nucleus accumbens core and shell reveal complementary signals for error prediction and incentive motivation. J. Neurosci. 35, 11572–11582 (2015). (PMID: 26290234454079610.1523/JNEUROSCI.2344-15.2015) ; Boekhoudt, L. et al. Enhancing excitability of dopamine neurons promotes motivational behaviour through increased action initiation. Eur. Neuropsychopharmacol. 28, 171–184 (2018). (PMID: 2915392810.1016/j.euroneuro.2017.11.005) ; Yang, H. et al. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 97, 434–449.e4 (2018). (PMID: 29307710577338710.1016/j.neuron.2017.12.022) ; Al-Hasani, R. et al. Distinct subpopulations of nucleus accumbens dynorphin neurons drive aversion and reward. Neuron 87, 1063–1077 (2015). (PMID: 26335648462538510.1016/j.neuron.2015.08.019) ; Boender, A. J. et al. Combined use of the canine adenovirus-2 and DREADD-technology to activate specific neural pathways in vivo. PLoS ONE 9, e95392 (2014). (PMID: 24736748398819610.1371/journal.pone.0095392) ; Navratilova, E. et al. Pain relief produces negative reinforcement through activation of mesolimbic reward–valuation circuitry. Proc. Natl Acad. Sci. USA 109, 20709–20713 (2012). (PMID: 23184995352853410.1073/pnas.1214605109) ; Liu, M.-Y. et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. Protoc. 13, 1686–1698 (2018). (PMID: 2998810410.1038/s41596-018-0011-z) ; van Zessen, R., Phillips, J. L., Budygin, E. A. & Stuber, G. D. Activation of VTA GABA neurons disrupts reward consumption. Neuron 73, 1184–1194 (2012). (PMID: 22445345331424410.1016/j.neuron.2012.02.016) ; Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B. & Holland, P. C. The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61, 786–800 (2009). (PMID: 19285474284147510.1016/j.neuron.2009.02.001) ; Huang, S., Borgland, S. L. & Zamponi, G. W. Peripheral nerve injury-induced alterations in VTA neuron firing properties. Mol. Brain 12, 89 (2019). (PMID: 31685030682725210.1186/s13041-019-0511-y) ; Creed, M. C., Ntamati, N. R. & Tan, K. R. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front. Behav. Neurosci. 8, 8 (2014). (PMID: 24478655389786810.3389/fnbeh.2014.00008) ; Waung, M. W., Margolis, E. B., Charbit, A. R. & Fields, H. L. A midbrain circuit that mediates headache aversiveness in rats. Cell Rep. 28, 2739–2747.e4 (2019). (PMID: 31509737683108510.1016/j.celrep.2019.08.009) ; Schultz, W. Dopamine reward prediction error coding. Dialogues Clin. Neurosci. 18, 23–32 (2016). (PMID: 27069377482676710.31887/DCNS.2016.18.1/wschultz) ; Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997). (PMID: 905434710.1126/science.275.5306.1593) ; Li, H. et al. Three rostromedial tegmental afferents drive triply dissociable aspects of punishment learning and aversive valence encoding. Neuron 104, 987–999.e4 (2019). (PMID: 31627985698909610.1016/j.neuron.2019.08.040) ; Morales, M. & Margolis, E. B. Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nat. Rev. Neurosci. 18, 73–85 (2017). (PMID: 2805332710.1038/nrn.2016.165) ; Navratilova, E. & Porreca, F. Reward and motivation in pain and pain relief. Nat. Neurosci. 17, 1304–1312 (2014). (PMID: 25254980430141710.1038/nn.3811) ; Leknes, S., Lee, M., Berna, C., Andersson, J. & Tracey, I. Relief as a reward: hedonic and neural responses to safety from pain. PLoS ONE 6, e17870 (2011). (PMID: 21490964307238210.1371/journal.pone.0017870) ; Mohebi, A. et al. Dissociable dopamine dynamics for learning and motivation. Nature 570, 65–70 (2019). (PMID: 31118513655548910.1038/s41586-019-1235-y) ; Liu, S. et al. Neuropathic pain alters reward and affect via kappa opioid receptor (KOR) upregulation. FASEB J. https://doi.org/10.1096/fasebj.30.1_supplement.928.5 (2016). ; Hayward, M. D., Schaich-Borg, A., Pintar, J. E. & Low, M. J. Differential involvement of endogenous opioids in sucrose consumption and food reinforcement. Pharmacol. Biochem. Behav. 85, 601–611 (2006). (PMID: 17166571186843810.1016/j.pbb.2006.10.015) ; Nummenmaa, L. et al. μ-opioid receptor system mediates reward processing in humans. Nat. Commun. 9, 1500 (2018). (PMID: 29662095590258010.1038/s41467-018-03848-y) ; Harris, R. E. et al. Decreased central μ-opioid receptor availability in fibromyalgia. J. Neurosci. 27, 10000–10006 (2007). (PMID: 17855614667265010.1523/JNEUROSCI.2849-07.2007) ; Zhou, W. et al. A neural circuit for comorbid depressive symptoms in chronic pain. Nat. Neurosci. https://doi.org/10.1038/s41593-019-0468-2 (2019).
  • Grant Information: R21 DA047127 United States DA NIDA NIH HHS; R21 DA041883 United States DA NIDA NIH HHS; R01 DA049924 United States DA NIDA NIH HHS; R21 DA042581 United States DA NIDA NIH HHS; R01 DA045463 United States DA NIDA NIH HHS; R01 DA042499 United States DA NIDA NIH HHS; F31 DA051124 United States DA NIDA NIH HHS; R33 DA041883 United States DA NIDA NIH HHS; R01 DA041781 United States DA NIDA NIH HHS
  • Entry Date(s): Date Created: 20211019 Date Completed: 20211110 Latest Revision: 20240215
  • Update Code: 20240215
  • PubMed Central ID: PMC8556343

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -