Zum Hauptinhalt springen

Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition.

Pomatto-Watson, LCD ; Bodogai, M ; et al.
In: Nature communications, Jg. 12 (2021-10-27), Heft 1, S. 6201
Online academicJournal

Titel:
Daily caloric restriction limits tumor growth more effectively than caloric cycling regardless of dietary composition.
Autor/in / Beteiligte Person: Pomatto-Watson, LCD ; Bodogai, M ; Bosompra, O ; Kato, J ; Wong, S ; Carpenter, M ; Duregon, E ; Chowdhury, D ; Krishna, P ; Ng, S ; Ragonnaud, E ; Salgado, R ; Gonzalez Ericsson, P ; Diaz-Ruiz, A ; Bernier, M ; Price, NL ; Biragyn, A ; Longo, VD ; de Cabo R
Link:
Zeitschrift: Nature communications, Jg. 12 (2021-10-27), Heft 1, S. 6201
Veröffentlichung: [London] : Nature Pub. Group, 2021
Medientyp: academicJournal
ISSN: 2041-1723 (electronic)
DOI: 10.1038/s41467-021-26431-4
Schlagwort:
  • Animals
  • Cell Line, Tumor
  • Fasting
  • Female
  • Lung Neoplasms secondary
  • Mammary Neoplasms, Experimental immunology
  • Mammary Neoplasms, Experimental pathology
  • Mice
  • Tumor Burden
  • Tumor Microenvironment immunology
  • Caloric Restriction methods
  • Lung Neoplasms prevention & control
  • Mammary Neoplasms, Experimental diet therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Comparative Study; Journal Article; Research Support, N.I.H., Extramural; Research Support, N.I.H., Intramural; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Commun] 2021 Oct 27; Vol. 12 (1), pp. 6201. <i>Date of Electronic Publication: </i>2021 Oct 27.
  • MeSH Terms: Caloric Restriction / *methods ; Lung Neoplasms / *prevention & control ; Mammary Neoplasms, Experimental / *diet therapy ; Animals ; Cell Line, Tumor ; Fasting ; Female ; Lung Neoplasms / secondary ; Mammary Neoplasms, Experimental / immunology ; Mammary Neoplasms, Experimental / pathology ; Mice ; Tumor Burden ; Tumor Microenvironment / immunology
  • References: Ingram, D. K. & de Cabo, R. Calorie restriction in rodents: caveats to consider. Ageing Res. Rev. 39, 15–28 (2017). (PMID: 28610949556567910.1016/j.arr.2017.05.008) ; Di Francesco, A., Di Germanio, C., Bernier, M. & de Cabo, R. A time to fast. Science 362, 770–775 (2018). (PMID: 30442801850431310.1126/science.aau2095) ; Mitchell, S. J. et al. Daily fasting improves health and survival in male mice independent of diet composition and calories. Cell Metab. 29, 221–228.e223 (2019). (PMID: 10.1016/j.cmet.2018.08.01130197301) ; Acosta-Rodríguez, V. A., de Groot, M. H., Rijo-Ferreira, F., Green, C. B. & Takahashi, J. S. Mice under caloric restriction self-impose a temporal restriction of food intake as revealed by an automated feeder system. Cell Metab. 26, 267–277. e262 (2017). (PMID: 28683292557644710.1016/j.cmet.2017.06.007) ; Lv, M., Zhu, X., Wang, H., Wang, F. & Guan, W. Roles of caloric restriction, ketogenic diet and intermittent fasting during initiation, progression and metastasis of cancer in animal models: a systematic review and meta-analysis. PLoS ONE 9, e115147–e115147 (2014). (PMID: 25502434426374910.1371/journal.pone.0115147) ; Levine, M. E. et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 19, 407–417 (2014). (PMID: 24606898398820410.1016/j.cmet.2014.02.006) ; Kim, E. J. et al. Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res. 13, R78 (2011). (PMID: 21834963323634210.1186/bcr2927) ; Lamming, D. W. et al. Restriction of dietary protein decreases mTORC1 in tumors and somatic tissues of a tumor-bearing mouse xenograft model. Oncotarget 6, 31233–31240 (2015). (PMID: 26378060474160010.18632/oncotarget.5180) ; Sundaram, S. & Yan, L. Time-restricted feeding mitigates high-fat diet-enhanced mammary tumorigenesis in MMTV-PyMT mice. Nutr. Res. 59, 72–79 (2018). (PMID: 3044223510.1016/j.nutres.2018.07.014) ; Lee, C. et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 70, 1564–1572 (2010). (PMID: 20145127283620210.1158/0008-5472.CAN-09-3228) ; Lee, C. & Longo, V. D. Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene 30, 3305–3316 (2011). (PMID: 2151612910.1038/onc.2011.91) ; Raffaghello, L. et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl Acad. Sci. USA 105, 8215–8220 (2008). (PMID: 18378900244881710.1073/pnas.0708100105) ; Brandhorst, S. et al. A periodic diet that mimics fasting promotes multi-system regeneration, enhanced cognitive performance, and healthspan. Cell Metab. 22, 86–99 (2015). (PMID: 26094889450973410.1016/j.cmet.2015.05.012) ; Di Tano, M. et al. Synergistic effect of fasting-mimicking diet and vitamin C against KRAS mutated cancers. Nat. Commun. 11, 2332 (2020). (PMID: 32393788721442110.1038/s41467-020-16243-3) ; de Groot, S. et al. Fasting mimicking diet as an adjunct to neoadjuvant chemotherapy for breast cancer in the multicentre randomized phase 2 DIRECT trial. Nat. Commun. 11, 3083 (2020). (PMID: 32576828731154710.1038/s41467-020-16138-3) ; Caffa, I. et al. Fasting-mimicking diet and hormone therapy induce breast cancer regression. Nature 583, 620–624 (2020). (PMID: 32669709788194010.1038/s41586-020-2502-7) ; Di Biase, S. et al. Fasting-mimicking diet reduces HO-1 to promote T cell-mediated tumor cytotoxicity. Cancer Cell 30, 136–146 (2016). (PMID: 27411588538854410.1016/j.ccell.2016.06.005) ; de Groot, S. et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 15, 652 (2015). (PMID: 26438237459505110.1186/s12885-015-1663-5) ; Brandhorst, S., Wei, M., Hwang, S., Morgan, T. E. & Longo, V. D. Short-term calorie and protein restriction provide partial protection from chemotoxicity but do not delay glioma progression. Exp. Gerontol. 48, 1120–1128 (2013). (PMID: 23454633376288710.1016/j.exger.2013.02.016) ; De Lorenzo, M. S. et al. Caloric restriction reduces growth of mammary tumors and metastases. Carcinogenesis 32, 1381–1387 (2011). (PMID: 21665891316512310.1093/carcin/bgr107) ; Simone, B. A. et al. Caloric restriction counteracts chemotherapy-induced inflammation and increases response to therapy in a triple negative breast cancer model. Cell Cycle 17, 1536–1544 (2018). (PMID: 29912618613333910.1080/15384101.2018.1471314) ; Horton, J. D., Bashmakov, Y., Shimomura, I. & Shimano, H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proc. Natl Acad. Sci. USA 95, 5987–5992 (1998). (PMID: 96009042757210.1073/pnas.95.11.5987) ; Nencioni, A., Caffa, I., Cortellino, S. & Longo, V. D. Fasting and cancer: molecular mechanisms and clinical application. Nat. Rev. Cancer 18, 707 (2018). (PMID: 30327499693816210.1038/s41568-018-0061-0) ; Gennari, A., Conte, P., Rosso, R., Orlandini, C. & Bruzzi, P. Survival of metastatic breast carcinoma patients over a 20‐year period: a retrospective analysis based on individual patient data from six consecutive studies. Cancer 104, 1742–1750 (2005). (PMID: 1614908810.1002/cncr.21359) ; Pulaski, B. A. & Ostrand-Rosenberg, S. Mouse 4T1 breast tumor model. Curr. Protoc. Immunol. 39, 20.22.21–20.22.16 (2000). (PMID: 10.1002/0471142735.im2002s39) ; Yang, L. et al. Disease progression model of 4T1 metastatic breast cancer. J. Pharmacokinet. Pharmacodyn. 47, 105–116 (2020). (PMID: 3197061510.1007/s10928-020-09673-5) ; van Diest, P. J., van der Wall, E. & Baak, J. P. Prognostic value of proliferation in invasive breast cancer: a review. J. Clin. Pathol. 57, 675–681 (2004). (PMID: 15220356177035110.1136/jcp.2003.010777) ; Olkhanud, P. B. et al. Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells. Cancer Res. 69, 5996–6004 (2009). (PMID: 19567680274368810.1158/0008-5472.CAN-08-4619) ; Olkhanud, P. B. et al. Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4 + T cells to T-regulatory cells. Cancer Res. 71, 3505–3515 (2011). (PMID: 21444674309670110.1158/0008-5472.CAN-10-4316) ; Bodogai, M. et al. Immunosuppressive and prometastatic functions of myeloid-derived suppressive cells rely upon education from tumor-associated B cells. Cancer Res. 75, 3456–3465 (2015). (PMID: 26183924455826910.1158/0008-5472.CAN-14-3077) ; Facciabene, A., Motz, G. T. & Coukos, G. T-regulatory cells: key players in tumor immune escape and angiogenesis. Cancer Res. 72, 2162–2171 (2012). (PMID: 22549946334284210.1158/0008-5472.CAN-11-3687) ; Joshi, N. S. et al. Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity 43, 579–590 (2015). (PMID: 26341400482661910.1016/j.immuni.2015.08.006) ; Kiniwa, Y. et al. CD8+ Foxp3+ regulatory T cells mediate immunosuppression in prostate cancer. Clin. Cancer Res. 13, 6947–6958 (2007). (PMID: 1805616910.1158/1078-0432.CCR-07-0842) ; Chaput, N. et al. Identification of CD8+ CD25+ Foxp3+ suppressive T cells in colorectal cancer tissue. Gut 58, 520–529 (2009). (PMID: 1902291710.1136/gut.2008.158824) ; Chakraborty, S. et al. Transcriptional regulation of FOXP3 requires integrated activation of both promoter and CNS regions in tumor-induced CD8+ Treg cells. Sci. Rep. 7, 1–14 (2017). (PMID: 10.1038/s41598-017-01788-z) ; Montero, A. J., Diaz-Montero, C. M., Kyriakopoulos, C. E., Bronte, V. & Mandruzzato, S. Myeloid-derived suppressor cells in cancer patients: a clinical perspective. J. Immunother. 35, 107–115 (2012). (PMID: 2230689810.1097/CJI.0b013e318242169f) ; Wang, H.-F. et al. Histone deacetylase inhibitors deplete myeloid-derived suppressor cells induced by 4T1 mammary tumors in vivo and in vitro. Cancer Immunol. Immunother. 66, 355–366 (2017). (PMID: 2791537110.1007/s00262-016-1935-1) ; Bergenfelz, C., Roxå, A., Mehmeti, M., Leandersson, K. & Larsson, A.-M. Clinical relevance of systemic monocytic-MDSCs in patients with metastatic breast cancer. Cancer Immunol. Immunother. 69, 435–448 (2020). (PMID: 31925475704414210.1007/s00262-019-02472-z) ; Coffelt, S. B. et al. IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522, 345–348 (2015). (PMID: 25822788447563710.1038/nature14282) ; Bailur, J. K., Gueckel, B., Derhovanessian, E. & Pawelec, G. Presence of circulating Her2-reactive CD8+T-cells is associated with lower frequencies of myeloid-derived suppressor cells and regulatory T cells, and better survival in older breast cancer patients. Breast Cancer Res. 17, 34 (2015). (PMID: 25849846437703410.1186/s13058-015-0541-z) ; Mahmoud, S. M. et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J. Clin. Oncol. 29, 1949–1955 (2011). (PMID: 2148300210.1200/JCO.2010.30.5037) ; Gao, Q. et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J. Clin. Oncol. 25, 2586–2593 (2007). (PMID: 1757703810.1200/JCO.2006.09.4565) ; Sato, E. et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 18538–18543 (2005). (PMID: 16344461131174110.1073/pnas.0509182102) ; Bates, G. J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24, 5373–5380 (2006). (PMID: 1713563810.1200/JCO.2006.05.9584) ; Manukian, G. et al. Caloric restriction impairs regulatory T-cells within the tumor microenvironment after radiation and primes effector T-cells. Int. J. Radiat. Oncol.* Biol.* Phys.(2021). ; Toor, S. M. et al. Myeloid cells in circulation and tumor microenvironment of breast cancer patients. Cancer Immunol. Immunother. 66, 753–764 (2017). (PMID: 28283696544514210.1007/s00262-017-1977-z) ; Kumar, V., Patel, S., Tcyganov, E. & Gabrilovich, D. I. The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208–220 (2016). (PMID: 26858199477539810.1016/j.it.2016.01.004) ; Georgoudaki, A.-M. et al. Reprogramming tumor-associated macrophages by antibody targeting inhibits cancer progression and metastasis. Cell Rep. 15, 2000–2011 (2016). (PMID: 2721076210.1016/j.celrep.2016.04.084) ; Kuroda, H. et al. Tumor microenvironment in triple-negative breast cancer: the correlation of tumor-associated macrophages and tumor-infiltrating lymphocytes. Clin. Transl. Oncol. https://doi.org/10.1007/s12094-021-02652-3 (2021). ; Oshi, M. et al. CD8 T cell score as a prognostic biomarker for triple-negative breast cancer. Int. J. Mol. Sci. 21, 6968 (2020). (PMID: 755557010.3390/ijms21186968) ; Turbitt, W. J. et al. Physical activity plus energy restriction prevents 4T1.2 mammary tumor progression, MDSC accumulation, and an immunosuppressive tumor microenvironment. Cancer Prev. Res. 12, 493–506 (2019). (PMID: 10.1158/1940-6207.CAPR-17-0233) ; Azizi, E. et al. Single-cell map of diverse immune phenotypes in the breast tumor microenvironment. Cell 174, 1293–1308.e1236 (2018). (PMID: 29961579634801010.1016/j.cell.2018.05.060) ; Menares, E. et al. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat. Commun. 10, 4401 (2019). (PMID: 31562311676501410.1038/s41467-019-12319-x) ; Egelston, C. A. et al. Resident memory CD8+ T cells within cancer islands mediate survival in breast cancer patients. JCI Insight 4, e130000 (2019). (PMID: 679540810.1172/jci.insight.130000) ; Salgado, R. et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann. Oncol. 26, 259–271 (2015). (PMID: 2521454210.1093/annonc/mdu450) ; Savas, P. et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat. Rev. Clin. Oncol. 13, 228 (2016). (PMID: 2666797510.1038/nrclinonc.2015.215) ; Arroyo‐Crespo, J. J. et al. Characterization of triple‐negative breast cancer preclinical models provides functional evidence of metastatic progression. Int. J. Cancer 145, 2267–2281 (2019). (PMID: 30860605676748010.1002/ijc.32270) ; Pearson, K. J. et al. Nrf2 mediates cancer protection but not prolongevity induced by caloric restriction. Proc. Natl Acad. Sci. USA 105, 2325–2330 (2008). (PMID: 18287083226813510.1073/pnas.0712162105) ; Lope, V. et al. Overeating, caloric restriction and breast cancer risk by pathologic subtype: the EPIGEICAM study. Sci. Rep. 9, 1–9 (2019). (PMID: 10.1038/s41598-019-39346-4) ; Mattison, J. A. et al. Caloric restriction improves health and survival of rhesus monkeys. Nat. Commun. 8, 14063 (2017). (PMID: 28094793524758310.1038/ncomms14063) ; MacLean, P. S., Bergouignan, A., Cornier, M.-A. & Jackman, M. R. Biology’s response to dieting: the impetus for weight regain. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 301, R581–R600 (2011). (PMID: 21677272317476510.1152/ajpregu.00755.2010) ; Teong, X. T. et al. Rationale and protocol for a randomized controlled trial comparing daily calorie restriction versus intermittent fasting to improve glycaemia in individuals at increased risk of developing type 2 diabetes. Obes. Res. Clin. Pract. 14, 176–183 (2020). (PMID: 3205771610.1016/j.orcp.2020.01.005) ; Harvie, M. N. et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int. J. Obes. 35, 714–727 (2011). (PMID: 10.1038/ijo.2010.171) ; Lee, C. et al. Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci. Transl. Med. 4, 124ra127–124ra127 (2012). (PMID: 10.1126/scitranslmed.3003293) ; Vernieri, C., Ligorio, F., Zattarin, E., Rivoltini, L. & de Braud, F. Fasting-mimicking diet plus chemotherapy in breast cancer treatment. Nat. Commun. 11, 1–4 (2020). (PMID: 10.1038/s41467-020-18194-1) ; Phoenix, K. N., Vumbaca, F., Fox, M. M., Evans, R. & Claffey, K. P. Dietary energy availability affects primary and metastatic breast cancer and metformin efficacy. Breast Cancer Res. Treat. 123, 333–344 (2010). (PMID: 2020449810.1007/s10549-009-0647-z) ; Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313, 1960–1964 (2006). (PMID: 1700853110.1126/science.1129139) ; Bense, R. D. et al. Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer. J. Natl Cancer Inst. 109, https://doi.org/10.1093/jnci/djw192 (2016). ; Kado, T., Nawaz, A., Takikawa, A., Usui, I. & Tobe, K. Linkage of CD8+ T cell exhaustion with high-fat diet-induced tumourigenesis. Sci. Rep. 9, 1–8 (2019). (PMID: 10.1038/s41598-019-48678-0) ; Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266 (2006). (PMID: 1643920210.1016/j.cell.2006.01.007) ; Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008). (PMID: 1863335510.1038/nrc2444) ; De Sanctis, F. et al. MDSCs in cancer: conceiving new prognostic and therapeutic targets. Biochim. Biophys. Acta-Rev. Cancer 1865, 35–48 (2016). (PMID: 10.1016/j.bbcan.2015.08.001) ; San Miguel, Y. et al. Age-related differences in breast cancer mortality according to race/ethnicity, insurance, and socioeconomic status. BMC Cancer 20, 1–9 (2020). (PMID: 10.1186/s12885-020-6696-8) ; Fearon, K. et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 12, 489–495 (2011). (PMID: 2129661510.1016/S1470-2045(10)70218-7) ; Levolger, S., van den Engel, S., Ambagtsheer, G., Ijzermans, J. N. M. & de Bruin, R. W. F. Caloric restriction is associated with preservation of muscle strength in experimental cancer cachexia. Aging (Albany, NY) 10, 4213–4223 (2018). (PMID: 30591621632667310.18632/aging.101724) ; Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 1–7 (2017). (PMID: 10.1038/s41598-017-17204-5) ; Meuten, D. J., Moore, F. M. & George, J. W. Mitotic count and the field of view area:time to standardize. Vet. Pathol. 53, 7–9 (2016). (PMID: 2671281310.1177/0300985815593349) ; van Diest, P. J. et al. Reproducibility of mitosis counting in 2,469 breast cancer specimens: results from the Multicenter Morphometric Mammary Carcinoma Project. Hum. Pathol. 23, 603–607 (1992). (PMID: 159238110.1016/0046-8177(92)90313-R)
  • Grant Information: FI2 GM123963 United States GM NIGMS NIH HHS
  • Entry Date(s): Date Created: 20211028 Date Completed: 20211203 Latest Revision: 20230207
  • Update Code: 20231215
  • PubMed Central ID: PMC8551193

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -