Zum Hauptinhalt springen

Versatility of subtilisin: A review on structure, characteristics, and applications.

Azrin, NAM ; Ali, MSM ; et al.
In: Biotechnology and applied biochemistry, Jg. 69 (2022-12-01), Heft 6, S. 2599-2616
Online academicJournal

Titel:
Versatility of subtilisin: A review on structure, characteristics, and applications.
Autor/in / Beteiligte Person: Azrin, NAM ; Ali, MSM ; Rahman, RNZRA ; Oslan, SN ; Noor, NDM
Link:
Zeitschrift: Biotechnology and applied biochemistry, Jg. 69 (2022-12-01), Heft 6, S. 2599-2616
Veröffentlichung: Jan. 2011- : Malden : Wiley-Blackwell ; <i>Original Publication</i>: San Diego : Academic Press, [cl986]-, 2022
Medientyp: academicJournal
ISSN: 1470-8744 (electronic)
DOI: 10.1002/bab.2309
Schlagwort:
  • Calcium
  • Amino Acid Sequence
  • Cloning, Molecular
  • Subtilisin genetics
  • Bacillus genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Biotechnol Appl Biochem] 2022 Dec; Vol. 69 (6), pp. 2599-2616. <i>Date of Electronic Publication: </i>2022 Feb 03.
  • MeSH Terms: Subtilisin* / genetics ; Bacillus* / genetics ; Calcium ; Amino Acid Sequence ; Cloning, Molecular
  • References: Rozanov AS, Shekhovtsov SV, Bogacheva NV, Pershina EG, Ryapolova AV, Bytyak DS, et al. Production of subtilisin proteases in bacteria and yeast. Vavilovskii Zhurnal Genetiki i Selektsii. 2021;25:125-34. https://doi.org/10.18699/VJ21.015. ; Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:D624-32. https://doi.org/10.1093/nar/gkx1134. ; Mótyán J, Tóth F, Tözsér J, Research applications of proteolytic enzymes in molecular biology. Biomolecules. 2013;3:923-42. https://doi.org/10.3390/biom3040923. ; Sakamoto Y, Suzuki Y, Iizuka I, Tateoka C, Roppongi S, Fujimoto M, et al. S46 peptidases are the first exopeptidases to be members of clan PA. Sci Rep. 2014;4:1-12. https://doi.org/10.1038/srep04977. ; Boon L, Ugarte-Berzal E, Vandooren J, Opdenakker G, Protease propeptide structures, mechanisms of activation, and functions. Crit Rev Biochem Mol Biol. 2020;55:111-65. https://doi.org/10.1080/10409238.2020.1742090. ; Graycar TP, Bott RR, Power SD, Estell DA, Subtilisins. In: N.D. Rawlings, G. Salvesen (Eds.), Handbook of Proteolytic Enzymes, 3rd ed., Academic Press, 2013: pp. 3148-55. https://doi.org/10.1016/B978-0-12-382219-2.00693-1. ; Gilliland GL, Teplyakov A, Structural calcium (trypsin, subtilisin), encyclopedia of inorganic and bioinorganic chemistry. 2011, 1-14. https://doi.org/10.1002/9781119951438.eibc0522. ; Markland FS, Smith EL, 16 Subtilisins: primary structure, chemical and physical properties. In: P.D. Boyer (Ed.), The Enzymes, Academic Press, 1971. pp. 561-608. ; Siezen RJ, De Vos WM, Leunissen JAM, Dijkstra BW, Homology modelling and protein engineering strategy of subtilases, the family of subtilisin-like serine proteinases. Protein Eng Des Sel. 1991;4:719-37. https://doi.org/10.1093/protein/4.7.719. ; Gurunathan R, Huang B, Ponnusamy VK, Hwang J-S, Dahms H-U, Novel recombinant keratin degrading subtilisin like serine alkaline protease from Bacillus cereus isolated from marine hydrothermal vent crabs. Sci Rep. 2021;11:1-14. https://doi.org/10.1038/s41598-021-90375-4. ; Tekin A, Uzuner U, Sezen K, Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125. Biotechnol Lett. 2021;43:479-94. https://doi.org/10.1007/s10529-020-03025-6. ; Jia Y, Cao X, Deng Y, Bao W, Tang C, Ding H, et al. Four residues of propeptide are essential for precursor folding of nattokinase. Acta Biochim Biophy Sin. 2014;46:957-64. https://doi.org/10.1093/abbs/gmu093. ; Ikemura H, Inouye M, In vitro processing of pro-subtilisin produced in Escherichia coli. J Biol Chem. 1988;263:12959-63. https://doi.org/10.1016/s0021-9258(18)37656-7. ; Jain SC, Shinde U, Li Y, Inouye M, Berman HM, The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 Å resolution. J Mol Biol. 1998;284:137-44. ; Abusham RA, Masomian M, Salleh AB, Raja Abd Rahman ATCLRNZ, An in-silico approach to understanding the structure-function: A molecular dynamics simulation study of Rand serine protease properties from Bacillus subtilis in aqueous solvents. Advances in Biotechnology & Microbiology 2019;12 . https://doi.org/10.19080/aibm.2019.12.555834. ; Smith CA, Toogood HS, Baker HM, Daniel RM, Baker EN, Calcium-mediated thermostability in the subtilisin superfamily: The crystal structure of Bacillus Ak.1 protease at 1.8 Å resolution. J Mol Biol 1999;294 . https://doi.org/10.1006/jmbi.1999.3291. ; Krieger E, Vriend G, YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 2014;30:2981-2. https://doi.org/10.1093/bioinformatics/btu426. ; Ding Y, Yang Y, Ren Y, Xia J, Liu F, Li Y, et al. Extracellular production, characterization, and engineering of a polyextremotolerant subtilisin-like protease from feather-degrading Thermoactinomyces vulgaris strain CDF. Front Microbiol. 2020;11:1-13. https://doi.org/10.3389/fmicb.2020.605771. ; Toogood HS, Daniel RM, Bacillus Strain AK.1 Protease. In: Rawlings ND, Salvesen G editors Handbook of Proteolytic Enzymes, Elsevier Ltd, 2013: pp. 3177-9. https://doi.org/10.1016/B978-0-12-382219-2.00700-6. ; Sellami-Kamoun A, Haddar A, Ali NEH, Ghorbel-Frikha B, Kanoun S, Nasri M, Stability of thermostable alkaline protease from Bacillus licheniformis RP1 in commercial solid laundry detergent formulations. Microbiol Res. 2008;163:299-306. https://doi.org/10.1016/j.micres.2006.06.001. ; Qoura F, Kassab E, Reiße S, Antranikian G, Brueck T, Characterization of a new, recombinant thermo-active subtilisin-like serine protease derived from Shewanella arctica. J Mol Catal B: Enzym. 2015;116:16-23. https://doi.org/10.1016/j.molcatb.2015.02.015. ; Guduk E, Yasar G, Gulhan UG, Aktas F, Isolation, purification and characterization of new cold active subtilisin-like protease from Bacillus sp. strain EL-GU1. Düzce University Journal of Science & Technology 2019;7:2057-73. ; Narinx E, Baise E, Gerday C, Subtilisin from psychrophilic antarctic bacteria: Characterization and site-directed mutagenesis of residues possibly involved in the adaptation to cold. Protein Eng 1997;10:1271-9. https://doi.org/10.1093/protein/10.11.1271. ; Wintrode PL, Miyazaki K, Arnold FH, Cold adaptation of a mesophilic subtilisin-like protease by laboratory evolution. J Biol Chem. 2000;275:31635-40. https://doi.org/10.1074/jbc.M004503200. ; Donlon J, Subtilisin. In: J. Polaina, A.P. MacCabe (Eds.), Industrial Enzymes, Springer, 2007: pp. 197-206. ; Liu Z, Zhao H, Han L, Cui W, Zhou L, Zhou Z, Improvement of the acid resistance, catalytic efficiency, and thermostability of nattokinase by multisite-directed mutagenesis. Biotechnol Bioeng. 2019;116:1833-43. https://doi.org/10.1002/bit.26983. ; Skowron PM, Krefft D, Brodzik R, Kasperkiewicz P, Drag M, Koller KP, An alternative for proteinase K-heat-sensitive protease from fungus Onygena corvina for biotechnology: Cloning, engineering, expression, characterization and special application for protein sequencing. Microb Cell Fact. 2020;19:1-15. https://doi.org/10.1186/s12934-020-01392-3. ; Fisher KE, Ruan B, Alexander PA, Wang L, Bryan PN, Mechanism of the kinetically-controlled folding reaction of subtilisin. Biochemistry. 2007;46:640-51. https://doi.org/10.1021/bi061600z. ; Pulido M, Saito K, Tanaka SI, Koga Y, Morikawa M, Takano K, et al. Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: The propeptide is a potent inhibitor of the mature domain but is not required for its folding. Appl Environ Microbiol. 2006;72:4154-62. https://doi.org/10.1128/AEM.02696-05. ; Uehara R, Ueda Y, You DJ, Koga Y, Kanaya S, Accelerated maturation of Tk-subtilisin by a Leu→Promutation at the C-terminus of the propeptide, which reduces the binding of the propeptide to Tk-subtilisin. FEBS J. 2013;280:994-1006. https://doi.org/10.1111/febs.12091. ; Óskarsson KR, Kristjánsson MM, Improved expression, purification and characterization of VPR, a cold active subtilisin-like serine proteinase and the effects of calcium on expression and stability. Biochimica et Biophysica Acta - Proteins and Proteomics 2019;1867:152-62. https://doi.org/10.1016/j.bbapap.2018.11.010. ; Thaz CJ, Jayaraman G, Calcium ion induced thermodynamic stability, bisubstrate specificity, and differential organic solvent tolerance of a predominantly β-sheet serine protease from Bacillus aquimaris VITP4. Biotechnol Appl Biochem 2019;66:955-61. https://doi.org/10.1002/bab.1811. ; Xia YL, Sun JH, Ai SM, Li Y, Du X, Sang P, et al. Insights into the role of electrostatics in temperature adaptation: A comparative study of psychrophilic, mesophilic, and thermophilic subtilisin-like serine proteases. RSC Adv 2018;8:29698-713. https://doi.org/10.1039/c8ra05845h. ; Rahman RNZRA, Molecular and Structural Biology of New Lipases and Proteases, Nova Science Publishers, 2013. ; Uehara R, Angkawidjaja C, Koga Y, Kanaya S, Formation of the high-affinity calcium binding site in pro-subtilisin e with the insertion sequence IS1 of Pro-Tk-subtilisin. Biochemistry 2013;52:9080-8. https://doi.org/10.1021/bi401342k. ; Tanaka SI, Saito K, Chon H, Matsumura H, Koga Y, Takano K, et al. Crystal structure of unautoprocessed precursor of subtilisin from a hyperthermophilic archaeon: Evidence for Ca2+-induced folding. J Biol Chem 2007;282:8246-55. https://doi.org/10.1074/jbc.M610137200. ; Uehara R, Takeuchi Y, Tanaka SI, Takano K, Koga Y, Kanaya S, Requirement of Ca2+ ions for the hyperthermostability of Tk-subtilisin from Thermococcus kodakarensis. Biochemistry 2012;51:5369-78. https://doi.org/10.1021/bi300427u. ; Dorau R, Görbe T, Svedendahl Humble M, Improved enantioselectivity of subtilisin Carlsberg towards secondary alcohols by protein engineering. ChemBioChem 2018;19:338-46. https://doi.org/10.1002/cbic.201700408. ; Despotovic D, Vojcic L, Blanusa M, Maurer KH, Zacharias M, Bocola M, et al. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg. J Biotechnol 2013;167:279-86. https://doi.org/10.1016/j.jbiotec.2013.06.017. ; Ward OP, 3.49 - Proteases. In: Moo-Young M (Ed.), Comprehensive Biotechnology, 2nd ed., Academic Press, 2011. pp. 571-82. https://doi.org/10.1016/B978-0-08-088504-9.00222-1. ; Global Alkaline Proteases Market Insights and Forecast to 2027, Research Reports World. 2021. https://www.researchreportsworld.com/global-alkaline-proteases-market-18086190. ; Dobson C, Dall'Acqua W, Protein engineering methods and applications. Protein Eng 2012,: 189-227. https://doi.org/10.5772/27306. ; Li Z, Roccatano D, Lorenz M, Schwaneberg U, Directed evolution of subtilisin E into a highly active and guanidinium chloride- and sodium dodecylsulfate-tolerant protease. ChemBioChem 2012;13:691-9. https://doi.org/10.1002/cbic.201100714. ; Zdarta J, Meyer AS, Jesionowski T, Pinelo M, A general overview of support materials for enzyme immobilization: Characteristics, properties, practical utility. Catalysts 2018;8. https://doi.org/10.3390/catal8020092. ; Sirisha VL, Jain A, Jain A, Enzyme immobilization: An overview on methods, support material, and applications of immobilized enzymes. Adv Food Nutr Res. 2016;79:179-211. https://doi.org/10.1016/bs.afnr.2016.07.004. ; Joshi S, Satyanarayana T, Characteristics and applications of a recombinant alkaline serine protease from a novel bacterium Bacillus lehensis. Bioresour Technol. 2013;131:76-85. https://doi.org/10.1016/j.biortech.2012.12.124. ; Mechri S, Kriaa M, Ben Elhoul Berrouina M, Omrane Benmrad M, Zaraî Jaouadi N, Rekik H, et al. Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 2017;101:383-97. https://doi.org/10.1016/j.ijbiomac.2017.03.051. ; Mechri S, Bouacem K, Zaraî Jaouadi N, Rekik H, Ben Elhoul M, Omrane Benmrad M, et al. Identification of a novel protease from the thermophilic Anoxybacillus kamchatkensis M1V and its application as laundry detergent additive. Extremophiles. 2019;23:687-706. https://doi.org/10.1007/s00792-019-01123-6. ; Naganthran A, Masomian M, Rahman RNZRA, Ali MSM, Nooh HM, Improving the efficiency of new automatic dishwashing detergent formulation by addition of thermostable lipase, protease and amylase. Molecules 2017;22:1-18. https://doi.org/10.3390/molecules22091577. ; Fang Z, Zhang J, Du G, Chen J, Improved catalytic efficiency, thermophilicity, anti-salt and detergent tolerance of keratinase KerSMD by partially truncation of PPC domain. Sci Rep 2016;6:1-11. https://doi.org/10.1038/srep27953. ; Cabanillas B, Pedrosa MM, Rodríguez J, Muzquiz M, Maleki SJ, Cuadrado C, et al. Influence of enzymatic hydrolysis on the allergenicity of roasted peanut protein extract. Int Arch Allergy Immunol. 2011;157:41-50. https://doi.org/10.1159/000324681. ; García-Moreno PJ, Pérez-Gálvez R, Espejo-Carpio FJ, Ruiz-Quesada C, Pérez-Morilla AI, Martínez-Agustín O, et al. Functional, bioactive and antigenicity properties of blue whiting protein hydrolysates: Effect of enzymatic treatment and degree of hydrolysis. J Sci Food Agric. 2017;97:299-308. https://doi.org/10.1002/jsfa.7731. ; Garcia-Mora P, Frias J, Peñas E, Zieliński H, Giménez-Bastida JA, Wiczkowski W, et al. Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. J Funct Foods. 2015;18:319-32. https://doi.org/10.1016/j.jff.2015.07.010. ; Aslan Y, Omerosmanoglu D, Koç EO, Covalent immobilization of an alkaline protease from Bacillus licheniformis. Turkish J Biochem. 2018;43:595-604. https://doi.org/10.1515/tjb-2017-0155. ; Memon AH, Ding R, Yuan Q, Wei Y, Liang H, Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chem. 2019;289:568-74. https://doi.org/10.1016/j.foodchem.2019.03.096. ; Veluchamy P, Sivakumar PM, Doble M, Immobilization of subtilisin on polycaprolactam for antimicrobial food packaging applications. J Agric Food Chem. 2011;59:10869-78. https://doi.org/10.1021/jf201124v. ; Regina VR, Søhoel H, Lokanathan AR, Bischoff C, Kingshott P, Revsbech NP, et al. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications. ACS Appl Mater Interfaces. 2012;4:5915-21. https://doi.org/10.1021/am301554m. ; Chen Y, Toth EA, Ruan B, Choi EJ, Simmerman R, Chen Y, et al. Engineering subtilisin proteases that specifically degrade active RAS. Communications Biology 2021;4:1-13. https://doi.org/10.1038/s42003-021-01818-7. ; Darwish G, Helmerhorst EJ, Schuppan D, Oppenheim FG, Wei G, Pharmaceutically modified subtilisins withstand acidic conditions and effectively degrade gluten in vivo. Sci Rep. 2019;9:3-12. https://doi.org/10.1038/s41598-019-43837-9. ; Gupta S, Tewatia P, Misri J, Singh R, Molecular modeling of cloned Bacillus subtilis keratinase and its insinuation in psoriasis treatment using docking studies. Indian Journal of Microbiology 2017;57:485-91. https://doi.org/10.1007/s12088-017-0677-x. ; Ghasemi Y, Dabbagh F, Ghasemian A, Cloning of a fibrinolytic enzyme (subtilisin) gene from Bacillus subtilis in Escherichia coli. Mol Biotechnol. 2012;52:1-7. https://doi.org/10.1007/s12033-011-9467-6. ; Yatagai C, Maruyama M, Kawahara T, Sumi H, Nattokinase-promoted tissue plasminogen activator release from human cells. Pathophysiol Haemost Thromb. 2008;36:227-32. https://doi.org/10.1159/000252817. ; Dabbagh F, Negahdaripour M, Berenjian A, Behfar A, Mohammadi F, Zamani M, et al. Nattokinase: Production and application. Appl Microbiol Biotechnol. 2014;98:9199-206. https://doi.org/10.1007/s00253-014-6135-3. ; Yanagisawa Y, Chatake T, Chiba-Kamoshida K, Naito S, Ohsugi T, Sumi H, et al. Purification, crystallization and preliminary X-ray diffraction experiment of nattokinase from Bacillus subtilis natto. Acta Crystallogr, Sect F: Struct Biol Cryst Commun. 2010;66:1670-3. https://doi.org/10.1107/S1744309110043137. ; Matsumoto K, Davis BG, Jones JB, Chemically modified “polar patch” mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: Designing combinatorial biocatalysts. Chem Eur J. 2002;8:4129-37. https://doi.org/10.1002/1521-3765(20020916)8:18/4129::AID-CHEM4129/3.0.CO;2-V. ; De Leo F, Panarese S, Gallerani R, Ceci L, Angiotensin converting enzyme (ACE) inhibitory peptides: production and implementation of functional food. Curr Pharm Des. 2009;15:3622-43. https://doi.org/10.2174/138161209789271834. ; Wu Q, Du J, Jia J, Kuang C, Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study. Food Chem. 2016;199:140-9. https://doi.org/10.1016/j.foodchem.2015.12.012. ; Ahn CB, Jeon YJ, Kim YT, Je JY, Angiotensin I converting enzyme (ACE) inhibitory peptides from salmon byproduct protein hydrolysate by Alcalase hydrolysis. Process Biochem. 2012;47:2240-5. https://doi.org/10.1016/j.procbio.2012.08.019. ; Tang H, Zhang J, Shi K, Aihara H, Du G, Insight into subtilisin E-S7 cleavage pattern based on crystal structure and hydrolysates peptide analysis. Biochem Biophys Res Commun. 2019;512:623-8. https://doi.org/10.1016/j.bbrc.2019.03.064. ; Sergeev ME, Voyushina TL, Sergeeva OA, Belozerskaya GG, Efficient enzyme-catalyzed synthesis of peptide secondary amides for use as serine proteinase inhibitors. J Mol Catal B: Enzym. 2012;80:58-66. https://doi.org/10.1016/j.molcatb.2012.04.019. ; Ren Y, Luo H, Huang H, Hakulinen N, Wang Y, Wang Y, et al. Improving the catalytic performance of Proteinase K from Parengyodontium album for use in feather degradation. Int J Biol Macromol. 2020;154:1586-95. https://doi.org/10.1016/j.ijbiomac.2019.11.043. ; Mechri S, Bouacem K, Jabeur F, Mohamed S, Addou NA, Dab A, et al. Purification and biochemical characterization of a novel thermostable and halotolerant subtilisin SAPN, a serine protease from Melghiribacillus thermohalophilus Nari2AT for chitin extraction from crab and shrimp shell by-products. Extremophiles 2019;23:529-47. https://doi.org/10.1007/s00792-019-01105-8. ; Hamed I, Özogul F, Regenstein JM, Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol. 2016;48:40-50. https://doi.org/10.1016/j.tifs.2015.11.007. ; Prabhawathi V, Sivakumar PM, Boobalan T, Manohar CM, Doble M, Design of antimicrobial polycaprolactam nanocomposite by immobilizing subtilisin conjugated Au/Ag core-shellf nanoparticles for biomedical applications. Mater Sci Eng, C 2019;94:656-65. https://doi.org/10.1016/j.msec.2018.10.020. ; Macchi C, Banach M, Corsini A, Sirtori CR, Ferri N, Ruscica M, Changes in circulating pro-protein convertase subtilisin/kexin type 9 levels - experimental and clinical approaches with lipid-lowering agents. European Journal of Preventive Cardiology 2019;26:930-49. https://doi.org/10.1177/2047487319831500. ; Giugliano RP, Pedersen TR, Saver JL, Sever PS, Keech AC, Bohula EA, et al. Stroke prevention with the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) inhibitor evolocumab added to statin in high-risk patients with stable atherosclerosis. Stroke 2020;9:1546-54. https://doi.org/10.1161/STROKEAHA.119.027759. ; Wald M, Rehbein H, Beermann C, Bußmann B, Schwarz K, Purification and characterization of pepsinogen and pepsin from the stomach of rainbow trout (Oncorhynchus mykiss). Eur Food Res Technol. 2016;242:1925-35. https://doi.org/10.1007/s00217-016-2692-2. ; Maseko SB, Natarajan S, Sharma V, Bhattacharyya N, Govender T, Sayed Y, et al. Purification and characterization of naturally occurring HIV-1 (South African subtype C) protease mutants from inclusion bodies. Protein Expression Purif. 2016;122:90-96. https://doi.org/10.1016/j.pep.2016.02.013. ; Azarkan M, Maquoi E, Delbrassine F, Herman R, M'Rabet N, Calvo Esposito R, et al. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci Rep. 2020;10:1-18. https://doi.org/10.1038/s41598-020-76172-5. ; Hata S, Kitamura F, Sorimachi H, Efficient expression and purification of recombinant human μ-calpain using an Escherichia coli expression system. Genes Cells. 2013;18:753-63. https://doi.org/10.1111/gtc.12071. ; Takahashi K, Aspergilloglutamic Peptidase. In: N.D. Rawlings, G. Salvesen (Eds.), Handbook of Proteolytic Enzymes, 2013: pp. 307-10. https://doi.org/10.1016/b978-0-12-382219-2.00074-0. ; Sasaki H, Kubota K, Lee WC, Ohtsuka J, Kojima M, Iwata S, et al. The crystal structure of an intermediate dimer of aspergilloglutamic peptidase that mimics the enzyme-activation product complex produced upon autoproteolysis. J Biochem 2012;152:45-52. https://doi.org/10.1093/jb/mvs050. ; Stocchi N, Revuelta MV, Castronuovo PAL, Vera DMA, ten Have A, Molecular dynamics and structure function analysis show that substrate binding and specificity are major forces in the functional diversification of Eqolisins. BMC Bioinf. 2018;19:1-16. https://doi.org/10.1186/s12859-018-2348-2. ; Rahman RNZRA, Muhd Noor NDM, Ibrahim NA, Salleh AB, Basri M, Effect of ion pair on thermostability of F1 protease: Integration of computational and experimental approaches. J Microbiol Biotechnol. 2012;22:34-45. https://doi.org/10.4014/jmb.1105.05055. ; Latiffi AA, Salleh AB, Rahman RNZRA, Nurbaya Oslan S, Basri M, Secretory expression of thermostable alkaline protease from Bacillus stearothermophilus FI by using native signal peptide and α-factor secretion signal in Pichia pastoris. Genes Genet Syst. 2013;88:85-91. https://doi.org/10.1266/ggs.88.85. ; Rahman RNZA, Razak CN, Ampon K, Basri M, Yunus WMZW, Salleh AB, Purification and characterization of a heat-stable alkaline protease from Bacillus stearothermophilus F1. Appl Microbiol Biotechnol. 1994;40:822-7. ; Abusham RA, Noor R, Ra Z, Salleh AB, Basri M, Optimization of physical factors affecting the production of thermo-stable organic solvent-tolerant protease from a newly isolated halo tolerant Bacillus subtilis strain Rand. Microb Cell Fact 2009;8:1-9. https://doi.org/10.1186/1475-2859-8-20. ; Rahman RNZR, Salleh AB, Basri M, Abusham RA, Thermostable organic solvent tolerant protease from gram-positive bacteria. USOO8802416B2, 2014,. ; Alias N, Ahmad Mazian M, Salleh AB, Basri M, Rahman RNZRA, Molecular cloning and optimization for high level expression of cold-adapted serine protease from Antarctic yeast Glaciozyma antarctica PI12. Enzyme Research 2014;2014 . https://doi.org/10.1155/2014/197938. ; Yu Y, Yan F, He Y, Qin Y, Chen Y, Chai Y, et al. The ClpY-ClpQ protease regulates multicellular development in Bacillus subtilis. Microbiology (United Kingdom) 2018;164:848-62. https://doi.org/10.1099/mic.0.000658. ; Jain S, Rathore S, Asad M, Hossain ME, Sinha D, Datta G, et al. The prokaryotic ClpQ protease plays a key role in growth and development of mitochondria in Plasmodium falciparum. Cell Microbiol. 2013;15:1660-73. https://doi.org/10.1111/cmi.12142. ; Said ZS@AM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, et al. Unravelling protein-organic solvent interaction of organic solvent tolerant elastase from Pseudomonas aeruginosa strain K crystal structure. Int J Biol Macromol. 2019;127:575-84. https://doi.org/10.1016/j.ijbiomac.2019.01.056. ; Majumder R, Banik SP, Khowala S, Purification and characterisation of κ-casein specific milk-clotting metalloprotease from Termitomyces clypeatus MTCC 5091. Food Chem. 2015;173:441-8. https://doi.org/10.1016/j.foodchem.2014.10.027. ; Rawlings ND, Barrett AJ, Introduction: serine peptidases and their clans. In: Rawlings ND, Salvesen G, editors, Handbook of Proteolytic Enzymes, 2013. pp. 2491-523. https://doi.org/10.1016/B978-0-12-382219-2.00559-7. ; Schulz EC, Dickmanns A, Urlaub H, Schmitt A, Mühlenhoff M, Stummeyer K, et al. Crystal structure of an intramolecular chaperone mediating triple-Β-helix folding. Nat Struct Mol Biol. 2010;17:210-5. https://doi.org/10.1038/nsmb.1746. ; Wright CS, Alden RA, Kraut J, Structure of subtilisin BPN′ at 2.5 Å resolution. Nature 1969;221:235-42. https://doi.org/10.1038/221235a0. ; Neidhart DJ, Petsko GA, The refined crystal structure of subtilisin carlsberg at 2.5 Å resolution. Protein Eng Des Sel. 1988;2:271-6. https://doi.org/10.1093/protein/2.4.271. ; Betzel C, Klupsch S, Branner S, Wilson KS, Crystal structures of the alkaline proteases savinase and esperase from Bacillus lentus. Adv Exp Med Biol. 1996;379:49-61. https://doi.org/10.1007/978-1-4613-0319-0_7. ; Vévodová J, Gamble M, Künze G, Ariza A, Dodson E, Jones DD, et al. Crystal structure of an intracellular subtilisin reveals novel structural features unique to this subtilisin family. Structure 2010;18:744-55. https://doi.org/10.1016/j.str.2010.03.008. ; Teplyakov AV, Kuranova IP, Harutyunyan EH, Vainshtein BK, Frömmel C, Höhne WE, et al. Crystal structure of thermitase at 1.4 Å resolution. J Mol Biol. 1990;214:261-79. https://doi.org/10.1016/0022-2836(90)90160-N. ; Hirata A, Hori Y, Koga Y, Okada J, Sakudo A, Ikuta K, et al. Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensis in detergents and its ability to degrade the abnormal prion protein. BMC Biotech. 2013;13: 1. https://doi.org/10.1186/1472-6750-13-19. ; Wei G, Tian N, Siezen R, Schuppan D, Helmerhorst EJ, Identification of food-grade subtilisins as gluten-degrading enzymes to treat celiac disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2016;311:G571-80. https://doi.org/10.1152/ajpgi.00185.2016. ; Weng M, Deng X, Bao W, Zhu L, Wu J, Cai Y, et al. Improving the activity of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation. Biochem Biophys Res Commun. 2015;465:580-6. https://doi.org/10.1016/j.bbrc.2015.08.063.
  • Grant Information: FGRS/1/2020/STG02/UPM/02/12 Kementerian Pengajian Tinggi
  • Contributed Indexing: Keywords: MEROPS database; applications; protein engineering; serine protease; subtilisin
  • Substance Nomenclature: EC 3.4.21.62 (Subtilisin) ; SY7Q814VUP (Calcium)
  • Entry Date(s): Date Created: 20220112 Date Completed: 20221227 Latest Revision: 20230103
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -