Zum Hauptinhalt springen

Vibratory cue training elicits anticipatory postural responses to an external perturbation.

Bhardwaj, S ; Negi, V ; et al.
In: Experimental brain research, Jg. 240 (2022-04-01), Heft 4, S. 1105-1116
Online academicJournal

Titel:
Vibratory cue training elicits anticipatory postural responses to an external perturbation.
Autor/in / Beteiligte Person: Bhardwaj, S ; Negi, V ; Vashista, V
Link:
Zeitschrift: Experimental brain research, Jg. 240 (2022-04-01), Heft 4, S. 1105-1116
Veröffentlichung: Berlin : Springer Verlag, 2022
Medientyp: academicJournal
ISSN: 1432-1106 (electronic)
DOI: 10.1007/s00221-022-06313-x
Schlagwort:
  • Electromyography methods
  • Humans
  • Muscle, Skeletal physiology
  • Postural Balance physiology
  • Posture physiology
  • Reproducibility of Results
  • Cues
  • Muscle Contraction physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Exp Brain Res] 2022 Apr; Vol. 240 (4), pp. 1105-1116. <i>Date of Electronic Publication: </i>2022 Feb 07.
  • MeSH Terms: Cues* ; Muscle Contraction* / physiology ; Electromyography / methods ; Humans ; Muscle, Skeletal / physiology ; Postural Balance / physiology ; Posture / physiology ; Reproducibility of Results
  • References: Alahakone AU, Senanayake SMNA (2010) A real-time system with assistive feedback for postural control in rehabilitation. IEEE/ASME Trans Mechatron 15:226–233. https://doi.org/10.1109/TMECH.2010.2041030. (PMID: 10.1109/TMECH.2010.2041030) ; Aruin AS, Latash ML (1995) Directional specificity of postural muscles in feed-forward postural reactions during fast voluntary arm movements. Exp Brain Res 103:323–332. https://doi.org/10.1007/BF00231718. (PMID: 10.1007/BF00231718) ; Aruin AS, Kanekar N, Lee YJ, Ganesan M (2015) Enhancement of anticipatory postural adjustments in older adults as a result of a single session of ball throwing exercise. Exp Brain Res 233:649–655. https://doi.org/10.1007/s00221-014-4144-1. (PMID: 10.1007/s00221-014-4144-1) ; Bair WN, Barela JA, Whitall J et al (2011) Children with developmental coordination disorder benefit from using vision in combination with touch information for quiet standing. Gait Posture 34:183–190. https://doi.org/10.1016/j.gaitpost.2011.04.007. (PMID: 10.1016/j.gaitpost.2011.04.007) ; Bartlett HL, Ting LH, Bingham JT (2014) Accuracy of force and center of pressure measures of the Wii Balance Board. Gait Posture 39:224–228. https://doi.org/10.1016/j.gaitpost.2013.07.010. (PMID: 10.1016/j.gaitpost.2013.07.010) ; Bastian AJ (2006) Learning to predict the future: the cerebellum adapts feedforward movement control. Curr Opin Neurobiol 16:645–649. https://doi.org/10.1016/j.conb.2006.08.016. (PMID: 10.1016/j.conb.2006.08.016) ; Brunetti O, Filippi GM, Lorenzini M et al (2006) Improvement of posture stability by vibratory stimulation following anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14:1180–1187. https://doi.org/10.1007/s00167-006-0101-2. (PMID: 10.1007/s00167-006-0101-2) ; Chen B, Lee YJ, Aruin AS (2018) Standing on a sliding board affects generation of anticipatory and compensatory postural adjustments. J Electromyogr Kinesiol 38:168–174. https://doi.org/10.1016/j.jelekin.2017.12.008. (PMID: 10.1016/j.jelekin.2017.12.008) ; Chiari L, Dozza M, Cappello A et al (2005) Audio-biofeedback for balance improvement: an accelerometry-based system. IEEE Trans Biomed Eng 52:2108–2111. https://doi.org/10.1109/TBME.2005.857673. (PMID: 10.1109/TBME.2005.857673) ; Collins JJ, Priplata AA, Gravelle DC et al (2003) Noise-enhanced human sensorimotor function. IEEE Eng Med Biol Mag 22:76–83. https://doi.org/10.1109/MEMB.2003.1195700. (PMID: 10.1109/MEMB.2003.1195700) ; De Azevedo AKEC, Claudino R, Conceição JS et al (2016) Anticipatory and compensatory postural adjustments in response to external lateral shoulder perturbations in subjects with Parkinson’s disease. PLoS ONE 11:1–17. https://doi.org/10.1371/journal.pone.0155012. (PMID: 10.1371/journal.pone.0155012) ; Dozza M, Horak FB, Chiari L (2007) Auditory biofeedback substitutes for loss of sensory information in maintaining stance. Exp Brain Res 178:37–48. https://doi.org/10.1007/s00221-006-0709-y. (PMID: 10.1007/s00221-006-0709-y) ; Friedli WG, Cohen L, Hallett M et al (1984) Postural adjustments associated with rapid voluntary arm movements. 1. Electromyographic data. J Neurol Neurosurg Psychiatry 47:611–622. https://doi.org/10.1136/jnnp.51.2.232. (PMID: 10.1136/jnnp.51.2.232) ; Goodworth AD, Wall C, Peterka RJ (2009) Influence of feedback parameters on performance of a vibrotactile balance prosthesis. IEEE Trans Neural Syst Rehabil Eng 17:397–408. https://doi.org/10.1109/TNSRE.2009.2023309. (PMID: 10.1109/TNSRE.2009.2023309) ; Goodworth AD, Wall C, Peterka RJ (2011) A balance control model predicts how vestibular loss subjects benefit from a vibrotactile balance prosthesis. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, EMBS. Boston, Massachusetts USA, pp 1306–1309. ; Horak FB, Nashner LM (1986) Central programming of postural movements: adaptation to altered support-surface configurations. J Neurophysiol 55:1369–1381. https://doi.org/10.1152/jn.1986.55.6.1369. (PMID: 10.1152/jn.1986.55.6.1369) ; Kanekar N, Santos MJ, Aruin AS (2008) Anticipatory postural control following fatigue of postural and focal muscles. Clin Neurophysiol 119:2304–2313. https://doi.org/10.1016/j.clinph.2008.06.015. (PMID: 10.1016/j.clinph.2008.06.015) ; Kim SW, Shim JK, Zatsiorsky VM, Latash ML (2006) Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations. Exp Brain Res 174:604–612. https://doi.org/10.1007/s00221-006-0505-8. (PMID: 10.1007/s00221-006-0505-8) ; Krishnan V, Aruin AS (2011) Postural control in response to a perturbation: role of vision and additional support. Exp Brain Res 212:385–397. https://doi.org/10.1007/s00221-011-2738-4. (PMID: 10.1007/s00221-011-2738-4) ; Labanca L, Iovine R, Bragonzoni L et al (2020) Instrumented platforms for balance and proprioceptive assessment in patients with total knee replacement: a systematic review and meta-analysis. Gait Posture 81:230–240. https://doi.org/10.1016/j.gaitpost.2020.07.080. (PMID: 10.1016/j.gaitpost.2020.07.080) ; Lacquaniti F, Maioli C (1987) Anticipatory and reflex coactivation of antagonist muscles in catching. Brain Res 406:373–378. (PMID: 10.1016/0006-8993(87)90810-9) ; Lee PY, Gadareh K, Naushahi MJ et al (2013) Protective stepping response in Parkinsonian patients and the effect of vibrotactile feedback. Mov Disord 28:482–489. https://doi.org/10.1002/mds.25227. (PMID: 10.1002/mds.25227) ; Liang H, Kaewmanee T, Aruin AS (2020) The role of an auditory cue in generating anticipatory postural adjustments in response to an external perturbation. Exp Brain Res 238:631–641. https://doi.org/10.1007/s00221-020-05738-6. (PMID: 10.1007/s00221-020-05738-6) ; Mauk MD, Medina JF, Nores WL, Ohyama T (2000) Cerebellar function: coordination, learning or timing? Curr Biol 10:522–525. https://doi.org/10.1016/S0960-9822(00)00584-4. (PMID: 10.1016/S0960-9822(00)00584-4) ; Miller J (1967) Vision, a component of locomotion. Physiotherapy 53:326–332. ; Mohapatra S, Krishnan V, Aruin AS (2012) The effect of decreased visual acuity on control of posture. Clin Neurophysiol 123:173–182. https://doi.org/10.1016/j.clinph.2011.06.008. (PMID: 10.1016/j.clinph.2011.06.008) ; Nardone A, Tarantola J, Giordano A, Schieppati M (1997) Fatigue effects on body balance. Electroencephalogr Clin Neurophysiol Electromyogr Motor Control 105:309–320. https://doi.org/10.1016/S0924-980X(97)00040-4. (PMID: 10.1016/S0924-980X(97)00040-4) ; Osoba MY, Rao AK, Agrawal SK, Lalwani AK (2019) Balance and gait in the elderly: a contemporary review. Laryngosc Investig Otolaryngol 4:143–153. https://doi.org/10.1002/lio2.252. (PMID: 10.1002/lio2.252) ; Pasma JH, Engelhart D, Schouten AC et al (2014) Impaired standing balance: the clinical need for closing the loop. Neuroscience 267:157–165. https://doi.org/10.1016/j.neuroscience.2014.02.030. (PMID: 10.1016/j.neuroscience.2014.02.030) ; Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture: physiological stimulus characteristics and clinical aspects. Brain 107:1143–1163. https://doi.org/10.1093/brain/107.4.1143. (PMID: 10.1093/brain/107.4.1143) ; Phinyomark A, Limsakul C, Phukpattaranont P (2011) Application of wavelet analysis in EMG feature extraction for pattern classification. Meas Sci Rev 11:45–52. https://doi.org/10.2478/v10048-011-0009-y. (PMID: 10.2478/v10048-011-0009-y) ; Rasman BG, Forbes PA, Tisserand R, Blouin JS (2018) Sensorimotor manipulations of the balance control loop-beyond imposed external perturbations. Front Neurol 9:1–17. https://doi.org/10.3389/fneur.2018.00899. (PMID: 10.3389/fneur.2018.00899) ; Santos MJ, Kanekar N, Aruin AS (2010a) The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. J Electromyogr Kinesiol 20:398–405. https://doi.org/10.1016/j.jelekin.2010.01.002. (PMID: 10.1016/j.jelekin.2010.01.002) ; Santos MJ, Kanekar N, Aruin AS (2010b) The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J Electromyogr Kinesiol 20:388–397. https://doi.org/10.1016/j.jelekin.2009.06.006. (PMID: 10.1016/j.jelekin.2009.06.006) ; Sienko KH, Seidler RD, Carender WJ et al (2018) Potential mechanisms of sensory augmentation systems on human balance control. Front Neurol 9:1–11. https://doi.org/10.3389/fneur.2018.00944. (PMID: 10.3389/fneur.2018.00944) ; Siriphorn A, Chamonchant D, Boonyong S (2015) The effects of vision on sit-to-stand movement. J Phys Ther Sci 27:83–86. https://doi.org/10.1589/jpts.27.83. (PMID: 10.1589/jpts.27.83) ; Solnik S, Rider P, Steinweg K et al (2010) Teager-Kaiser energy operator signal conditioning improves EMG onset detection. Eur J Appl Physiol 110:489–498. https://doi.org/10.1007/s00421-010-1521-8. (PMID: 10.1007/s00421-010-1521-8) ; Sozzi S, Nardone A, Schieppati M (2019) Vision does not necessarily stabilize the head in space during continuous postural perturbations. Front Neurol 10:1–13. https://doi.org/10.3389/fneur.2019.00748. (PMID: 10.3389/fneur.2019.00748) ; Wall C, Kentala E (2005) Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits. J Vestib Res 15:313–325. (PMID: 10.3233/VES-2005-155-607) ; Wolpert DM, Ghahramani Z, Jordan MI (1995) An internal model for sensorimotor integration. Science 269:1880–1882. (PMID: 10.1126/science.7569931)
  • Contributed Indexing: Keywords: Anticipatory postural adjustment; Balance; External perturbation; Haptics; Postural control; Vibratory cue
  • Entry Date(s): Date Created: 20220208 Date Completed: 20220420 Latest Revision: 20220420
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -