Zum Hauptinhalt springen

Quantum interference of identical photons from remote GaAs quantum dots.

Zhai, L ; Nguyen, GN ; et al.
In: Nature nanotechnology, Jg. 17 (2022-08-01), Heft 8, S. 829-833
Online academicJournal

Titel:
Quantum interference of identical photons from remote GaAs quantum dots.
Autor/in / Beteiligte Person: Zhai, L ; Nguyen, GN ; Spinnler, C ; Ritzmann, J ; Löbl, MC ; Wieck, AD ; Ludwig, A ; Javadi, A ; Warburton, RJ
Link:
Zeitschrift: Nature nanotechnology, Jg. 17 (2022-08-01), Heft 8, S. 829-833
Veröffentlichung: London : Nature Pub. Group, 2006-, 2022
Medientyp: academicJournal
ISSN: 1748-3395 (electronic)
DOI: 10.1038/s41565-022-01131-2
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nat Nanotechnol] 2022 Aug; Vol. 17 (8), pp. 829-833. <i>Date of Electronic Publication: </i>2022 May 19.
  • References: Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011). (PMID: 10.1103/RevModPhys.83.33) ; Yin, H.-L. et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016). (PMID: 10.1103/PhysRevLett.117.190501) ; Wang, H. et al. Boson sampling with 20 input photons and a 60-mode interferometer in a 10 14 -dimensional Hilbert space. Phys. Rev. Lett. 123, 250503 (2019). (PMID: 10.1103/PhysRevLett.123.250503) ; Qiang, X. et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photon. 12, 534–539 (2018). (PMID: 10.1038/s41566-018-0236-y) ; Strauf, S. et al. High-frequency single-photon source with polarization control. Nat. Photon. 1, 704–708 (2007). (PMID: 10.1038/nphoton.2007.227) ; Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017). (PMID: 10.1038/nnano.2017.218) ; Liu, F. et al. High Purcell factor generation of indistinguishable on-chip single photons. Nat. Nanotechnol. 13, 835–840 (2018). (PMID: 10.1038/s41565-018-0188-x) ; Uppu, R., Midolo, L., Zhou, X., Carolan, J. & Lodahl, P. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nat. Nanotechnol. 16, 1308–1317 (2021). ; Tomm, N. et al. A bright and fast source of coherent single photons. Nat. Nanotechnol. 16, 399–403 (2021). (PMID: 10.1038/s41565-020-00831-x) ; Reindl, M. et al. Phonon-assisted two-photon interference from remote quantum emitters. Nano Lett. 17, 4090–4095 (2017). (PMID: 10.1021/acs.nanolett.7b00777) ; Weber, J. H. et al. Two-photon interference in the telecom C-band after frequency conversion of photons from remote quantum emitters. Nat. Nanotechnol. 14, 23–26 (2018). (PMID: 10.1038/s41565-018-0279-8) ; Llewellyn, D. et al. Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 16, 148–153 (2020). (PMID: 10.1038/s41567-019-0727-x) ; He, Y.-M. et al. On-demand semiconductor single-photon source with near-unity indistinguishability. Nat. Nanotechnol. 8, 213–217 (2013). (PMID: 10.1038/nnano.2012.262) ; Basset, F. B. et al. Quantum key distribution with entangled photons generated on demand by a quantum dot. Sci. Adv. 7, eabe6379 (2021). (PMID: 10.1126/sciadv.abe6379) ; Grim, J. Q. et al. Scalable in operando strain tuning in nanophotonic waveguides enabling three-quantum-dot superradiance. Nat. Mater. 18, 963–969 (2019). (PMID: 10.1038/s41563-019-0418-0) ; Kołodyński, J. et al. Device-independent quantum key distribution with single-photon sources. Quantum 4, 260 (2020). (PMID: 10.22331/q-2020-04-30-260) ; Patel, R. B. et al. Two-photon interference of the emission from electrically tunable remote quantum dots. Nat. Photon. 4, 632–635 (2010). (PMID: 10.1038/nphoton.2010.161) ; He, Y. et al. Indistinguishable tunable single photons emitted by spin-flip Raman transitions in InGaAs quantum dots. Phys. Rev. Lett. 111, 237403 (2013). (PMID: 10.1103/PhysRevLett.111.237403) ; Giesz, V. et al. Cavity-enhanced two-photon interference using remote quantum dot sources. Phys. Rev. B 92, 161302 (2015). (PMID: 10.1103/PhysRevB.92.161302) ; Zopf, M. et al. Frequency feedback for two-photon interference from separate quantum dots. Phys. Rev. B 98, 161302 (2018). (PMID: 10.1103/PhysRevB.98.161302) ; You, X. et al. Quantum interference between independent solid-state single-photon sources separated by 300 km fiber. Preprint at https://arxiv.org/abs/2106.15545 (2021). ; Zhai, L. et al. Low-noise GaAs quantum dots for quantum photonics. Nat. Commun. 11, 4745 (2020). (PMID: 10.1038/s41467-020-18625-z) ; Santori, C., Fattal, D., Vučković, J., Solomon, G. S. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002). (PMID: 10.1038/nature01086) ; Wang, H. et al. Near-transform-limited single photons from an efficient solid-state quantum emitter. Phys. Rev. Lett. 116, 213601 (2016). (PMID: 10.1103/PhysRevLett.116.213601) ; Thoma, A. et al. Exploring dephasing of a solid-state quantum emitter via time- and temperature-dependent Hong-Ou-Mandel experiments. Phys. Rev. Lett. 116, 033601 (2016). (PMID: 10.1103/PhysRevLett.116.033601) ; Kuhlmann, A. V. et al. Charge noise and spin noise in a semiconductor quantum device. Nat. Phys. 9, 570–575 (2013). (PMID: 10.1038/nphys2688) ; Schöll, E. et al. Resonance fluorescence of GaAs quantum dots with near-unity photon indistinguishability. Nano Lett. 19, 2404–2410 (2019). (PMID: 10.1021/acs.nanolett.8b05132) ; Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nat. Phys. 3, 538–541 (2007). (PMID: 10.1038/nphys644) ; Stephenson, L. J. et al. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett. 124, 110501 (2020). (PMID: 10.1103/PhysRevLett.124.110501) ; Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006). (PMID: 10.1038/nature04628) ; Stockill, R. et al. Phase-tuned entangled state generation between distant spin qubits. Phys. Rev. Lett. 119, 010503 (2017). (PMID: 10.1103/PhysRevLett.119.010503) ; Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013). (PMID: 10.1038/nature12016) ; Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018). (PMID: 10.1038/s41586-018-0200-5) ; Kambs, B. & Becher, C. Limitations on the indistinguishability of photons from remote solid state sources. New J. Phys. 20, 115003 (2018). (PMID: 10.1088/1367-2630/aaea99) ; Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005). (PMID: 10.1103/PhysRevLett.95.210505) ; James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001). (PMID: 10.1103/PhysRevA.64.052312) ; Istrati, D. et al. Sequential generation of linear cluster states from a single photon emitter. Nat. Commun. 11, 5501 (2020). ; Cogan, D., Su, Z.-E., Kenneth, O. & Gershoni, D. A deterministic source of indistinguishable photons in a cluster state. Preprint at https://arxiv.org/abs/2110.05908 (2021). ; Wolters, J. et al. Simple atomic quantum memory suitable for semiconductor quantum dot single photons. Phys. Rev. Lett. 119, 060502 (2017). (PMID: 10.1103/PhysRevLett.119.060502) ; Nguyen, G. et al. Influence of molecular beam effusion cell quality on optical and electrical properties of quantum dots and quantum wells. J. Cryst. Growth 550, 125884 (2020). (PMID: 10.1016/j.jcrysgro.2020.125884) ; Gurioli, M., Wang, Z., Rastelli, A., Kuroda, T. & Sanguinetti, S. Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nat. Mater. 18, 799–810 (2019). (PMID: 10.1038/s41563-019-0355-y) ; Heyn, C. et al. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 94, 183113 (2009). (PMID: 10.1063/1.3133338) ; Mooney, P. Deep donor levels (DX centers) in III-V semiconductors. J. Appl. Phys. 67, R1–R26 (1990). (PMID: 10.1063/1.345628) ; Warburton, R. J. Single spins in self-assembled quantum dots. Nat. Mater. 12, 483 (2013). (PMID: 10.1038/nmat3585) ; Kuhlmann, A. V. et al. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode. Rev. Sci. Instrum. 84, 073905 (2013). (PMID: 10.1063/1.4813879) ; Löbl, M. C. et al. Correlations between optical properties and Voronoi-cell area of quantum dots. Phys. Rev. B 100, 155402 (2019). (PMID: 10.1103/PhysRevB.100.155402) ; Keil, R. et al. Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions. Nat. Commun. 8, 15501 (2017). (PMID: 10.1038/ncomms15501) ; Zhai, L. et al. Large-range frequency tuning of a narrow-linewidth quantum emitter. Appl. Phys. Lett. 117, 083106 (2020). (PMID: 10.1063/5.0017995) ; Fischer, K. A. et al. Signatures of two-photon pulses from a quantum two-level system. Nat. Phys. 13, 649–654 (2017). (PMID: 10.1038/nphys4052) ; Altepeter, J., Jeffrey, E. & Kwiat, P. Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005). ; White, A. G. et al. Measuring two-qubit gates. J. Opt. Soc. Am. B 24, 172–183 (2007).
  • Grant Information: 721394 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions); 861097 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions); 840453 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions); 200020_175748 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation); 200020_204069 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation); 383065199 Deutsche Forschungsgemeinschaft (German Research Foundation); TRR160 Deutsche Forschungsgemeinschaft (German Research Foundation); QR.X 16KISQ009 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research); CDFA05-06 Deutsch-Französische Hochschule (Franco-German University)
  • Entry Date(s): Date Created: 20220519 Latest Revision: 20220815
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -