Zum Hauptinhalt springen

Presynaptic nigral GPR55 receptors stimulate [ <superscript>3</superscript> H]-GABA release through [ <superscript>3</superscript> H]-cAMP production and PKA activation and promote motor behavior.

Sánchez-Zavaleta, R ; Ávalos-Fuentes, JA ; et al.
In: Synapse (New York, N.Y.), Jg. 76 (2022-09-01), Heft 11-12, S. e22246
Online academicJournal

Titel:
Presynaptic nigral GPR55 receptors stimulate [ <superscript>3</superscript> H]-GABA release through [ <superscript>3</superscript> H]-cAMP production and PKA activation and promote motor behavior.
Autor/in / Beteiligte Person: Sánchez-Zavaleta, R ; Ávalos-Fuentes, JA ; González-Hernández, AV ; Recillas-Morales, S ; Paz-Bermúdez, FJ ; Leyva-Gómez, G ; Cortés, H ; Florán, B
Link:
Zeitschrift: Synapse (New York, N.Y.), Jg. 76 (2022-09-01), Heft 11-12, S. e22246
Veröffentlichung: <2005-> : Hoboken, N.J. : Wiley ; <i>Original Publication</i>: New York : Alan R. Liss, Inc., c1987-, 2022
Medientyp: academicJournal
ISSN: 1098-2396 (electronic)
DOI: 10.1002/syn.22246
Schlagwort:
  • Animals
  • Azabicyclo Compounds
  • Benzoates
  • Bicuculline pharmacology
  • Calcium metabolism
  • Kainic Acid metabolism
  • Kainic Acid pharmacology
  • Neurotransmitter Agents pharmacology
  • RNA, Messenger metabolism
  • Rats
  • Receptors, Dopamine D1 metabolism
  • Substance P metabolism
  • Substantia Nigra metabolism
  • Thapsigargin metabolism
  • Thapsigargin pharmacology
  • gamma-Aminobutyric Acid metabolism
  • Cannabidiol metabolism
  • Cannabidiol pharmacology
  • Receptors, Cannabinoid metabolism
  • Receptors, G-Protein-Coupled metabolism
  • Receptors, Presynaptic metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Synapse] 2022 Sep; Vol. 76 (11-12), pp. e22246. <i>Date of Electronic Publication: </i>2022 Jul 23.
  • MeSH Terms: Cannabidiol* / metabolism ; Cannabidiol* / pharmacology ; Receptors, Cannabinoid* / metabolism ; Receptors, G-Protein-Coupled* / metabolism ; Receptors, Presynaptic* / metabolism ; Animals ; Azabicyclo Compounds ; Benzoates ; Bicuculline / pharmacology ; Calcium / metabolism ; Kainic Acid / metabolism ; Kainic Acid / pharmacology ; Neurotransmitter Agents / pharmacology ; RNA, Messenger / metabolism ; Rats ; Receptors, Dopamine D1 / metabolism ; Substance P / metabolism ; Substantia Nigra / metabolism ; Thapsigargin / metabolism ; Thapsigargin / pharmacology ; gamma-Aminobutyric Acid / metabolism
  • References: Aceves, J., Floran, B., Sierra, A., & Mariscal, S. (1995). D-1 receptor mediated modulation of the release of gamma-aminobutyric acid by endogenous dopamine in the basal ganglia of the rat. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 19, 727-739. ; Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neuroscience. (Tins), 13, 266-271. ; Alhouayek, M., Masquelier, J., & Muccioli, G. G. (2018). Lysophosphatidylinositols, from cell membrane constituents to GPR55 ligands. Trends in Pharmacological Sciences, 39, 586-604. ; Ari, I. L., Schwarz, L., & Atlas, D. (1989). Cholinergic-induced [3H] noradrenaline release in rat brain cortical slices is mediated via a pertussis toxin sensitive GTP binding protein and involves activation of protein kinase C. Cellular Signalling, 1, 461-470. ; Arias-Montano, J. A., Floran, B., Floran, L., Aceves, J., & Young, J. M. (2007). Dopamine D(1) receptor facilitation of depolarization-induced release of gamma-amino-butyric acid in rat striatum is mediated by the cAMP/PKA pathway and involves P/Q-type calcium channels. Synapse, 61, 310-319. ; Arizzi-LaFrance, M. N., Correa, M., Aragon, C. M., & Salamone, J. D. (2006). Motor stimulant effects of ethanol injected into the substantia nigra pars reticulata: Importance of catalase-mediated metabolism and the role of acetaldehyde. Neuropsychopharmacology, 31, 997-1008. ; Arnt, J., Scheel-Krüger, J., Magelund, G., & Krogsgaard-Larsen, P. (1979). Muscimol and related GABA receptor agonists: The potency of GABAergic drugs in vivo determined after intranigral injection. Journal of Pharmacy and Pharmacology, 31, 306-313. ; Balenga, N. A., Aflaki, E., Kargl, J., Platzer, W., Schroder, R., Blattermann, S., Kostenis, E., & Brown, A. J. (2011). GPR55 regulates cannabinoid 2 receptor-mediated responses in human neutrophils. Cell Research, 21, 1452-1469. ; Barik, J., & Wonnacott, S. (2009). Molecular and cellular mechanisms of action of nicotine in the CNS. Handbook of Experimental Pharmacology, 173-207. ; Begg, M., Pacher, P., Batkai, S., Osei-Hyiaman, D., Offertaler, L., Mo, F. M., Liu, J., & Kunos, G. (2005). Evidence for novel cannabinoid receptors. Pharmacology & Therapeutics, 106, 133-145. ; Bisogno, T., Hanus, L., De Petrocellis, L., Tchilibon, S., Ponde, D. E., Brandi, I., Moriello, A. S., Davis, J. B., Mechoulam, R., & Di Marzo, V. (2001). Molecular targets for cannabidiol and its synthetic analogues: Effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British Journal of Pharmacology, 134(4), 845-852. ; Brand, C. S., Hocker, H. J., Gorfe, A. A., Cavasotto, C. N., & Dessauer, C. W. (2013). Isoform selectivity of adenylyl cyclase inhibitors: Characterization of known and novel compounds. Journal of Pharmacology and Experimental Therapeutics, 347, 265-275. ; Brown, A. J., Castellano-Pellicena, I., Haslam, C. P., Nichols, P. L., & Dowell, S. J. (2018). Structure-activity relationship of the GPR55 antagonist, CID16020046. Pharmacology, 102, 324-331. ; Burnet, P., Eastwood, S., Lacey, K., & Harrison, P. (1995). The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Research, 676, 157-168. ; Campos Campos, B., Avalos-Fuentes, A., Pina Leyva, C., Sanchez-Zavaleta, R., Loya-Lopez, S., Rangel-Barajas, C., Leyva-Gomez, G., & Cortes, H. (2020). Coexistence of D3 R typical and atypical signaling in striatonigral neurons during dopaminergic denervation. Correlation with D3 nf expression changes. Synapse, 74, e22152. ; Celorrio, M., Rojo-Bustamante, E., Fernandez-Suarez, D., Saez, E., Estella-Hermoso de Mendoza, A., Muller, C. E., Ramirez, M. J., & Oyarzabal, J. (2017). GPR55: A therapeutic target for Parkinson's disease? Neuropharmacology, 125, 319-332. ; Chanaday, N. L., & Kavalali, E. T. (2018). Presynaptic origins of distinct modes of neurotransmitter release. Current Opinion in Neurobiology, 51, 119-126. ; Chijiwa, T., Mishima, A., Hagiwara, M., Sano, M., Hayashi, K., Inoue, T., Naito, K., & Toshioka, T. (1990). Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide. (H-89) of PC12D pheochromocytoma cells. Journal of Biological Chemistry, 265, 5267-5272. ; Cortés, H., Paz, F., Erlij, D., Aceves, J., & Florán, B. (2010). GABAB receptors modulate depolarization-stimulated [3H] glutamate release in slices of the pars reticulata of the rat substantia nigra. European Journal of Pharmacology, 649, 161-167. ; Deliu, E., Sperow, M., Console-Bram, L., Carter, R. L., Tilley, D. G., Kalamarides, D. J., Kirby, L. G., & Brailoiu, G. C. (2015). The lysophosphatidylinositol receptor GPR55 modulates pain perception in the periaqueductal gray. Molecular Pharmacology, 88, 265-272. ; Deniau, J. M., Mailly, P., Maurice, N., & Charpier, S. (2007). The pars reticulata of the substantia nigra: A window to basal ganglia output. Progress in Brain Research, 160, 151-172. ; De Petrocellis, L., Orlando, P., Moriello, A. S., Aviello, G., Stott, C., Izzo, A. A., & Di Marzo, V. (2012). Cannabinoid actions at TRPV channels: Effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta Physiol. (Oxf), 204(2), 255-266. ; Dessauer, C. W., Watts, V. J., Ostrom, R. S., Conti, M., Dove, S., & Seifert, R. (2017). International union of basic and clinical pharmacology. CI. Structures and small molecule modulators of mammalian adenylyl cyclases. Pharmacological Reviews, 69, 93-139. ; Doyle, T. B., Muntean, B. S., Ejendal, K. F., Hayes, M. P., Soto-Velasquez, M., Martemyanov, K. A., Dessauer, C. W., & Hu, C. D. (2019). Identification of novel adenylyl cyclase 5. (AC5) signaling networks in D1 and D2 medium spiny neurons using bimolecular fluorescence complementation screening. Cells, 8. ; Drzazga, A., Sowinska, A., Krzeminska, A., Rytczak, P., Koziolkiewicz, M., & Gendaszewska-Darmach, E. (2017). Lysophosphatidylcholine elicits intracellular calcium signaling in a GPR55-dependent manner. Biochemical and Biophysical Research Communications, 489, 242-247. ; Fan, P., Jiang, Z., Diamond, I., & Yao, L. (2009). Up-regulation of AGS3 during morphine withdrawal promotes cAMP superactivation via adenylyl cyclase 5 and 7 in rat nucleus accumbens/striatal neurons. Molecular Pharmacology, 76, 526-533. ; Filip, B., Haydeh Niazi, S., & Hans, N. (2003). Somatodendritic dopamine release in rat substantia nigra influences motor performance on the accelerating rod. Brain Research, 973, 81-91. ; Floran, B., Barajas, C., Floran, L., Erlij, D., & Aceves, J. (2002). Adenosine A1 receptors control dopamine D1-dependent [(3)H]GABA release in slices of substantia nigra pars reticulata and motor behavior in the rat. Neuroscience, 115, 743-751. ; Foster, S. R., Hauser, A. S., Vedel, L., Strachan, R. T., Huang, X. P., Gavin, A. C., Shah, S. D., & Nayak, A. P. (2019). Discovery of human signaling systems: Pairing peptides to G protein-coupled receptors. Cell, 179, 895-908. e821. ; Garcia, M., Floran, B., Arias-Montano, J. A., Young, J. M., & Aceves, J. (1997). Histamine H3 receptor activation selectively inhibits dopamine D1 receptor-dependent [3H]GABA release from depolarization-stimulated slices of rat substantia nigra pars reticulata. Neuroscience, 80, 241-249. ; Gerfen, C. R. (1988). Synaptic organization of the striatum. Journal of Electron Microscopy Technique, 10, 265-281. ; Gomes, F. V., Resstel, L. B., & Guimaraes, F. S. (2011). The anxiolytic-like effects of cannabidiol injected into the bed nucleus of the stria terminalis are mediated by 5-HT1A receptors. Psychopharmacology, 213(2-3), 465-473. ; Guatteo, E., Chung, K. K., Bowala, T. K., Bernardi, G., Mercuri, N. B., & Lipski, J. (2005). Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: Involvement of transient receptor potential channels. Journal of Neurophysiology, 94(5), 3069-3080. ; Halls, M. L., & Cooper, D. M. (2011). Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harbor perspectives in biology, 3, a004143. ; Henstridge, C. M., Balenga, N. A., Schroder, J., Kargl, K., Platzer, L., & Martini, L. (2010). GPR55 ligands promote receptor coupling to multiple signalling pathways. British Journal of Pharmacology, 160(3), 604-614. ; Hurst, K., Badgley, C., Ellsworth, T., Bell, S., Friend, L., Prince, B., Welch, J., & Cowan, Z. (2017). A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity. Hippocampus, 27, 985-998. ; Iwamoto, T., Okumura, S., Iwatsubo, K., Kawabe, J., Ohtsu, K., Sakai, I., Hashimoto, Y., & Izumitani, A. (2003). Motor dysfunction in type 5 adenylyl cyclase-null mice. Journal of Biological Chemistry, 278, 16936-16940. ; Jiang, L. I., Collins, J., Davis, R., Fraser, I. D., & Sternweis, P. C. (2008). Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII. Journal of Biological Chemistry, 283, 23429-23439. ; Jiang, L. I., Wang, J. E., & Sternweis, P. C. (2013). Regions on adenylyl cyclase VII required for selective regulation by the G13 pathway. Molecular Pharmacology, 83, 587-593. ; Jijon-Lorenzo, R., Caballero-Floran, I. H., Recillas-Morales, S., Cortes, H., Avalos-Fuentes, J. A., Paz-Bermudez, F. J., Erlij, D., & Floran, B. (2018). Presynaptic dopamine D2 receptors modulate [(3)H]GABA release at striatopallidal terminals via activation of PLC→IP3→calcineurin and inhibition of AC→cAMP→PKA signaling cascades. Neuroscience, 372, 74-86. ; Jin, W., Lo, T.-M., Loh, H. H., & Thayer, S. A. (1994). U73122 inhibits phospholipase C-dependent calcium mobilization in neuronal cells. Brain Research, 642, 237-243. ; Johns, D. G., Behm, D. J., Walker, D. J., Ao, Z., Shapland, E. M., Daniels, D. A., Riddick, M., & Dowell, S. (2007). The novel endocannabinoid receptor GPR55 is activated by atypical cannabinoids but does not mediate their vasodilator effects. British Journal of Pharmacology, 152, 825-831. ; Kallendrusch, S., Kremzow, S., Nowicki, M., Grabiec, U., Winkelmann, R., Benz, A., Kraft, R., & Bechmann, I. (2013). The G protein-coupled receptor 55 ligand l-alpha-lysophosphatidylinositol exerts microglia-dependent neuroprotection after excitotoxic lesion. Glia, 61, 1822-1831. ; Kaplan, J. S., Stella, N., Catterall, W. A., & Westenbroek, R. E. (2017). Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome. Proceedings of the National Academy of Sciences of the United States of America, 114, 11229-11234. ; Kargl, J., Brown, A. J., Andersen, L., Dorn, G., Schicho, R., Waldhoer, M., & Heinemann, A. (2013). A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function. Journal of Pharmacology and Experimental Therapeutics, 346, 54-66. ; Kayadjanian, N., Menétrey, A., & Besson, M. J. (1997). Activation of muscarinic receptors stimulates GABA release in the rat globus pallidus. Synapse, 26, 131-139. ; Kelm, M. K., Criswell, H. E., & Breese, G. R. (2007). Calcium release from presynaptic internal stores is required for ethanol to increase spontaneous gamma-aminobutyric acid release onto cerebellum Purkinje neurons. Journal of Pharmacology and Experimental Therapeutics, 323, 356-364. ; Khvotchev, M., Lonart, G., & Südhof, T. (2000). Role of calcium in neurotransmitter release evoked by α-latrotoxin or hypertonic sucrose. Neuroscience, 101, 793-802. ; Lanfumey, L., & Hamon, M. (2000). Central 5-HT(1A) receptors: Regional distribution and functional characteristics. Nuclear Medicine and Biology, 27(5), 429-435. ; Laprairie, R. B., Bagher, A. M., Kelly, M. E., & Denovan-Wright, E. M. (2015). Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. British Journal of Pharmacology, 172(20), 4790-4805. ; Lauckner, J. E., Jensen, J. B., Chen, H. Y., Lu, H. C., Hille, B., & Mackie, K. (2008). GPR55 is a cannabinoid receptor that increases intracellular calcium and inhibits M current. Proceedings of the National Academy of Sciences of the United States of America, 105, 2699-2704. ; Li, K., Fichna, J., Schicho, R., Saur, D., Bashashati, M., Mackie, K., Li, Y., & Zimmer, A. (2013). A role for O-1602 and G protein-coupled receptor GPR55 in the control of colonic motility in mice. Neuropharmacology, 71, 255-263. ; Magen, I., Avraham, Y., Ackerman, Z., Vorobiev, L., Mechoulam, R., & Berry, E. M. (2010). Cannabidiol ameliorates cognitive and motor impairments in bile-duct ligated mice via 5-HT1A receptor activation. British Journal of Pharmacology, 159(4), 950-957. ; Mango, D., Bonito-Oliva, A., Ledonne, A., Nistico, R., Castelli, V., Giorgi, M., Sancesario, G., & Fisone, G. (2014). Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato-nigral projections under normal and dopamine-depleted conditions. Neuropharmacology, 76 Pt A:127-136. ; Marichal-Cancino, B. A., Fajardo-Valdez, A., Ruiz-Contreras, A. E., Mendez-Diaz, M., & Prospero-Garcia, O. (2017). Advances in the physiology of GPR55 in the central nervous system. Current Neuropharmacology, 15, 771-778. ; Marinelli, S., Di Marzo, V., Berretta, N., Matias, I., Maccarrone, M., Bernardi, G., & Mercuri, N. B. (2003). Presynaptic facilitation of glutamatergic synapses to dopaminergic neurons of the rat substantia nigra by endogenous stimulation of vanilloid receptors. Journal of Neuroscience, 23(8), 3136-3144. ; Marinelli, S., Di Marzo, V., Florenzano, F., Fezza, F., Viscomi, M. T., van der Stelt, M., Bernardi, G., Molinari, M., Maccarrone, M., & Mercuri, N. B. (2007). N-arachidonoyl-dopamine tunes synaptic transmission onto dopaminergic neurons by activating both cannabinoid and vanilloid receptors. Neuropsychopharmacology, 32(2), 298-308. ; Martinez-Pinilla, E., Aguinaga, D., Navarro, G., Rico, A. J., Oyarzabal, J., Sanchez-Arias, J. A., Lanciego, J. L., & Franco, R. (2019). Targeting CB1 and GPR55 endocannabinoid receptors as a potential neuroprotective approach for Parkinson's disease. Molecular Neurobiology, 56, 5900-5910. ; Martinez-Pinilla, E., Reyes-Resina, I., Onatibia-Astibia, A., Zamarbide, M., Ricobaraza, A., Navarro, G., Moreno, E., & Dopeso-Reyes, I. G. (2014). CB1 and GPR55 receptors are co-expressed and form heteromers in rat and monkey striatum. Experimental Neurology, 261, 44-52. ; Martinez-Pinilla, E., Rico, A. J., Rivas-Santisteban, R., Lillo, J., Roda, E., Navarro, G., Lanciego, J. L., & Franco, R. (2020). Expression of GPR55 and either cannabinoid CB1 or CB2 heteroreceptor complexes in the caudate, putamen, and accumbens nuclei of control, parkinsonian, and dyskinetic non-human primates. Brain Structure & Function, 225, 2153-2164. ; Mathew, S. S., & Hablitz, J. J. (2008). Calcium release via activation of presynaptic IP3 receptors contributes to kainate-induced IPSC facilitation in rat neocortex. Neuropharmacology, 55, 106-116. ; McHugh, D., Page, J., Dunn, E., & Bradshaw, H. B., Delta(9). (2012). -Tetrahydrocannabinol and N-arachidonyl glycine are full agonists at GPR18 receptors and induce migration in human endometrial HEC-1B cells. British Journal of Pharmacology, 165(8), 2414-2424. ; McKillop, A. M., Moran, B. M., Abdel-Wahab, Y. H., & Flatt, P. R. (2013). Evaluation of the insulin releasing and antihyperglycaemic activities of GPR55 lipid agonists using clonal beta-cells, isolated pancreatic islets and mice. British Journal of Pharmacology, 170, 978-990. ; Meredith, G. E., & Kang, U. J. (2006). Behavioral models of Parkinson's disease in rodents: A new look at an old problem. Movement disorders, 21, 1595-1606. ; Mezey, E., Toth, Z. E., Cortright, D. N., Arzubi, M. K., Krause, J. E., Elde, R., Guo, A., & Blumberg, P. M. (2000). Distribution of mRNA for vanilloid receptor subtype 1. (VR1) and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proceeding of the National Academy of Sciences of the United States of America, 97, 3655-3660. ; Misgeld, U., Drew, G., & Yanovsky, Y. (2007). Presynaptic modulation of GABA release in the basal ganglia. Progress in Brain Research, 160, 245-259. ; Mishima, K., Hayakawa, K., Abe, K., Ikeda, T., Egashira, N., Iwasaki, K., & Fujiwara, M. (2005). Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke; A Journal of Cerebral Circulation, 36(5), 1077-1082. ; Mizuno, K., Kurokawa, K., & Ohkuma, S. (2013). Regulation of type 1 IP3 receptor expression by dopamine D2-like receptors via AP-1 and NFATc4 activation. Neuropharmacology, 71, 264-272. ; Momiyama, T., & Koga, E. (2001). Dopamine D(2)-like receptors selectively block N-type Ca(2+) channels to reduce GABA release onto rat striatal cholinergic interneurones. Journal of Physiology, 533, 479-492. ; Mons, N., Yoshimura, M., Ikeda, H., Hoffman, P. L., & Tabakoff, B. (1998). Immunological assessment of the distribution of type VII adenylyl cyclase in brain. Brain Research, 788, 251-261. ; Morales, P., & Reggio, P. H. (2017). An update on non-CB1, non-CB2 cannabinoid related G-protein-coupled receptors. Cannabis and Cannabinoid Research, 2, 265-273. ; Moreno, E., Andradas, C., Medrano, M., Caffarel, M. M., Perez-Gomez, E., Blasco-Benito, S., Gomez-Canas, M., & Pazos, M. R. (2014). Targeting CB2-GPR55 receptor heteromers modulates cancer cell signaling. Journal of Biological Chemistry, 289, 21960-21972. ; Musella, A., Fresegna, D., Rizzo, F. R., Gentile, A., Bullitta, S., De Vito, F., Guadalupi, L., & Centonze, D. (2017). A novel crosstalk within the endocannabinoid system controls GABA transmission in the striatum. Science Reports, 7, 7363. ; Nava-Asbell, C., Paz-Bermudez, F., Erlij, D., Aceves, J., & Floran, B. (2007). GABA(B) receptor activation inhibits dopamine D1 receptor-mediated facilitation of [(3)H]GABA release in substantia nigra pars reticulata. Neuropharmacology, 53, 631-637. ; Oka, S., Nakajima, K., Yamashita, A., Kishimoto, S., & Sugiura, T. (2007). Identification of GPR55 as a lysophosphatidylinositol receptor. Biochemical and Biophysical Research Communications, 362, 928-934. ; Paxinos, G., & Watson, C. (2006). The rat brain in stereotaxic coordinates: Hard cover edition. 6th edn. Academic Press. ; Pertwee, R. G. (2007). GPR55: A new member of the cannabinoid receptor clan? British Journal of Pharmacology, 152, 984-986. ; Pertwee, R. G., Howlett, A. C., Abood, M. E., Alexander, S. P., Di Marzo, V., Elphick, M. R., Greasley, P. J., Hansen, H. S., Kunos, G., Mackie, K., Mechoulam, R., & Ross, R. A. (2010). International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: Beyond CB(1) and CB(2). Pharmacological Reviews, 62(4), 588-631. ; Pieroni, J. P., Jacobowitz, O., Chen, J., & Iyengar, R. (1993a). Signal recognition and integration by Gs-stimulated adenylyl cyclases. Current Opinion in Neurobiology, 3, 345-351. ; Pieroni, J. P., Miller, D., Premont, R. T., & Iyengar, R. (1993b). Type 5 adenylyl cyclase distribution. Nature, 363, 679-680. ; Pietr, M., Kozela, E., Levy, R., Rimmerman, N., Lin, Y. H., Stella, N., Vogel, Z., & Juknat, A. (2009). Differential changes in GPR55 during microglial cell activation. Febs Letters, 583, 2071-2076. ; Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nature Reviews Neuroscience, 4, 873-884. ; Qin, N., Neeper, M. P., Liu, Y., Hutchinson, T. L., Lubin, M. L., & Flores, C. M. (2008). TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. Journal of Neuroscience, 28(24), 6231-6238. ; Rangel-Barajas, C., Silva, I., Lopez-Santiago, L. M., Aceves, J., Erlij, D., & Floran, B. (2011). L-DOPA-induced dyskinesia in hemiparkinsonian rats is associated with up-regulation of adenylyl cyclase type V/VI and increased GABA release in the substantia nigra reticulata. Neurobiology of Disease, 41, 51-61. ; Recillas-Morales, S., Sanchez-Vega, L., Ochoa-Sanchez, N., Caballero-Floran, I., Paz-Bermudez, F., Silva, I., Aceves, J., Erlij, D., & Florán, B. (2014). L-type Ca(2)(+) channel activity determines modulation of GABA release by dopamine in the substantia nigra reticulata and the globus pallidus of the rat. Neuroscience, 256, 292-301. ; Riad, M., Garcia, S., Watkins, K. C., Jodoin, N., Doucet, E., Langlois, X., el Mestikawy, S., Hamon, M., & Descarries, L. (2000). Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. Journal of Comparative Neurology, 417(2), 181-194. ; Robertson-Gray, O. J., Walsh, S. K., Ryberg, E., Jonsson-Rylander, A. C., Lipina, C., & Wainwright, C. L. (2019). l-alpha-Lysophosphatidylinositol. (LPI) aggravates myocardial ischemia/reperfusion injury via a GPR55/ROCK-dependent pathway. Pharmacology Research and Perspectives, 7, e00487. ; Rodriguez-Sanchez, M., Escartin-Perez, R. E., Leyva-Gomez, G., Avalos-Fuentes, J. A., Paz-Bermudez, F. J., Loya-Lopez, S. I., Aceves, J., & Erlij, D. (2019). Blockade of intranigral and systemic D3 receptors stimulates motor activity in the rat promoting a reciprocal interaction among glutamate, dopamine, and GABA. Biomolecules, 9. ; Ross, R. A. (2009). The enigmatic pharmacology of GPR55. Trends in Pharmacological Sciences, 30, 156-163. ; Russo, E. B., Burnett, A., Hall, B., & Parker, K. K. (2005). Agonistic properties of cannabidiol at 5-HT1a receptors. Neurochemical Research, 30, 1037-1043. ; Ryberg, E., Larsson, N., Sjogren, S., Hjorth, S., Hermansson, N. O., Leonova, J., Elebring, T., & Nilsson, K. (2007). The orphan receptor GPR55 is a novel cannabinoid receptor. British Journal of Pharmacology, 152, 1092-1101. ; Sadana, R., & Dessauer, C. W. (2009). Physiological roles for G protein-regulated adenylyl cyclase isoforms: Insights from knockout and overexpression studies. Neuro-Signals, 17, 5-22. ; Sakmann, B. (2006). Patch pipettes are more useful than initially thought: Simultaneous pre- and postsynaptic recording from mammalian CNS synapses in vitro and in vivo. Pflugers Archiv: European Journal of Physiology, 453, 249-259. ; Sanabra, C., & Mengod, G. (2011). Neuroanatomical distribution and neurochemical characterization of cells expressing adenylyl cyclase isoforms in mouse and rat brain. Journal of Chemical Neuroanatomy, 41, 43-54. ; Sanchez-Zavaleta, R., Cortes, H., Avalos-Fuentes, J. A., Garcia, U., Segovia Vila, J., Erlij, D., & Floran, B. (2018). Presynaptic cannabinoid CB2 receptors modulate [(3) H]-Glutamate release at subthalamo-nigral terminals of the rat. Synapse, 72, e22061. ; Schroder, R., Janssen, N., Schmidt, J., Kebig, A., Merten, N., Hennen, S., Muller, A., & Blattermann, S. (2010). Deconvolution of complex G protein-coupled receptor signaling in live cells using dynamic mass redistribution measurements. Nature Biotechnology, 28, 943-949. ; Schwarcz, R., & Coyle, J. T. (1977). Striatal lesions with kainic acid: Neurochemical characteristics. Brain Research, 127, 235-249. ; Senarath, K., Kankanamge, D., Samaradivakara, S., Ratnayake, K., Tennakoon, M., & Karunarathne, A. (2018). Regulation of G protein betagamma signaling. International Review of Cell and Molecular Biology, 339, 133-191. ; Sharir, H., & Abood, M. E. (2010). Pharmacological characterization of GPR55, a putative cannabinoid receptor. Pharmacology & Therapeutics, 126(3), 301-313. ; Smith, Y., & Bolam, J. P. (1989). Neurons of the substantia nigra reticulata receive a dense GABA-containing input from the globus pallidus in the rat. Brain Research, 493, 160-167. ; Stehno-Bittel, L., Krapivinsky, G., Krapivinsky, L., Perez-Terzic, C., & Clapham, D. E. (1995). The G protein beta gamma subunit transduces the muscarinic receptor signal for Ca2+ release in Xenopus oocytes. Journal of Biological Chemistry, 270, 30068-30074. ; Stromberg, I., & Bickford-Wimer, P. (1991). Effects of locally applied D1 and D2 agonists on striatal neurons with 6-OHDA and pertussis toxin lesions. Brain Research, 564, 279-285. ; Sylantyev, S., Jensen, T. P., Ross, R. A., & Rusakov, D. A. (2013). Cannabinoid- and lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at central synapses. Proceedings of the National Academy of Sciences of the United States of America, 110, 5193-5198. ; Trevitt, J., Carlson, B., Correa, M., Keene, A., Morales, M., & Salamone, J. (2002). Interactions between dopamine D1 receptors and γ-aminobutyric acid mechanisms in substantia nigra pars reticulata of the rat: Neurochemical and behavioral studies. Psychopharmacology, 159, 229-237. ; Vong, C. T., Tseng, H. H. L., Kwan, Y. W., Lee, S. M., & Hoi, M. P. M. (2019). G-protein coupled receptor 55 agonists increase insulin secretion through inositol trisphosphate-mediated calcium release in pancreatic beta-cells. European Journal of Pharmacology, 854, 372-379. ; Voorn, P., Gerfen, C. R., & Groenewegen, H. J. (1989). Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine, and calcium-binding protein. Journal of Comparative Neurology, 289, 189-201. ; Wallmichrath, I., & Szabo, B. (2002). Cannabinoids inhibit striatonigral GABAergic neurotransmission in the mouse. Neuroscience, 113, 671-682. ; Wang, J., Lu, H. X., & Wang, J. (2019). Cannabinoid receptors in osteoporosis and osteoporotic pain: A narrative update of review. Journal of Pharmacy and Pharmacology, 71, 1469-1474. ; Watkins, A. R. (2019). Cannabinoid interactions with ion channels and receptors. Channels. (Austin), 13, 162-167. ; Whyte, L. S., Ryberg, E., Sims, N. A., Ridge, S. A., Mackie, K., Greasley, P. J., Ross, R. A., & Rogers, M. J. (2009). The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106, 16511-16516. ; Wu, C. S., Chen, H., Sun, H., Zhu, J., Jew, C. P., Wager-Miller, J., Straiker, A., & Spencer, C. (2013). GPR55, a G-protein coupled receptor for lysophosphatidylinositol, plays a role in motor coordination. PLoS One, 8, e60314. ; Yang, H., Zhou, J., & Lehmann, C. (2016). GPR55 - a putative “type 3” cannabinoid receptor in inflammation. Journal of Basic and Clinical Physiology and Pharmacology, 27, 297-302. ; Yoshimura, M., Ikeda, H., & Tabakoff, B. (1996). mu-Opioid receptors inhibit dopamine-stimulated activity of type V adenylyl cyclase but enhance dopamine-stimulated activity of type VII adenylyl cyclase. Molecular Pharmacology, 50, 43-51. ; Young, L. H., Balin, B. J., & Weis, M. T. (2005). Go 6983: A fast acting protein kinase C inhibitor that attenuates myocardial ischemia/reperfusion injury. Cardiovascular Drug Reviews, 23, 255-272. ; Zanelati, T. V., Biojone, C., Moreira, F. A., Guimaraes, F. S., & Joca, S. R. (2010). Antidepressant-like effects of cannabidiol in mice: Possible involvement of 5-HT1A receptors. British Journal of Pharmacology, 159(1), 122-128.
  • Contributed Indexing: Keywords: GRR55 receptors; LPI; cannabinoids; motor behavior; substantia nigra
  • Substance Nomenclature: 0 (4-(4-(3-hydroxyphenyl)-3-(4-methylphenyl)-6-oxo-1H,4H,5H,6H-pyrrolo(3,4-c)pyrazol-5-yl)benzoic acid) ; 0 (Azabicyclo Compounds) ; 0 (Benzoates) ; 0 (GPR55 protein, rat) ; 0 (Neurotransmitter Agents) ; 0 (RNA, Messenger) ; 0 (Receptors, Cannabinoid) ; 0 (Receptors, Dopamine D1) ; 0 (Receptors, G-Protein-Coupled) ; 0 (Receptors, Presynaptic) ; 19GBJ60SN5 (Cannabidiol) ; 33507-63-0 (Substance P) ; 56-12-2 (gamma-Aminobutyric Acid) ; 67526-95-8 (Thapsigargin) ; SIV03811UC (Kainic Acid) ; SY7Q814VUP (Calcium) ; Y37615DVKC (Bicuculline)
  • Entry Date(s): Date Created: 20220713 Date Completed: 20220920 Latest Revision: 20221011
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -