Zum Hauptinhalt springen

SARS-CoV-2 Delta and Omicron variants evade population antibody response by mutations in a single spike epitope.

He, P ; Liu, B ; et al.
In: Nature microbiology, Jg. 7 (2022-10-01), Heft 10, S. 1635-1649
Online academicJournal

Titel:
SARS-CoV-2 Delta and Omicron variants evade population antibody response by mutations in a single spike epitope.
Autor/in / Beteiligte Person: He, P ; Liu, B ; Gao, X ; Yan, Q ; Pei, R ; Sun, J ; Chen, Q ; Hou, R ; Li, Z ; Zhang, Y ; Zhao, J ; Sun, H ; Feng, B ; Wang, Q ; Yi, H ; Hu, P ; Li, P ; Chen, Z ; Niu, X ; Zhong, X ; Jin, L ; Liu, X ; Qu, K ; Ciazynska, KA ; Carter, AP ; Briggs, JAG ; Chen, J ; Liu, J ; Chen, X ; He, J ; Chen, L ; Xiong, X
Link:
Zeitschrift: Nature microbiology, Jg. 7 (2022-10-01), Heft 10, S. 1635-1649
Veröffentlichung: [London] : Nature Publishing Group, [2016]-, 2022
Medientyp: academicJournal
ISSN: 2058-5276 (electronic)
DOI: 10.1038/s41564-022-01235-4
Schlagwort:
  • Antibodies, Viral
  • Antibody Formation
  • Epitopes genetics
  • Humans
  • Mutation
  • Spike Glycoprotein, Coronavirus genetics
  • Spike Glycoprotein, Coronavirus metabolism
  • COVID-19
  • SARS-CoV-2 genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Microbiol] 2022 Oct; Vol. 7 (10), pp. 1635-1649. <i>Date of Electronic Publication: </i>2022 Sep 23.
  • MeSH Terms: COVID-19* ; SARS-CoV-2* / genetics ; Antibodies, Viral ; Antibody Formation ; Epitopes / genetics ; Humans ; Mutation ; Spike Glycoprotein, Coronavirus / genetics ; Spike Glycoprotein, Coronavirus / metabolism
  • References: Harvey, W. T. et al. SARS-CoV-2 variants, spike mutations and immune escape. Nat. Rev. Microbiol. 19, 409–424 (2021). (PMID: 34075212816783410.1038/s41579-021-00573-0) ; Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020). (PMID: 33045718809246110.1038/s41586-020-2852-1) ; Yuan, M. et al. Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science 373, 818–823 (2021). (PMID: 3401674010.1126/science.abh1139) ; Cao, Y. et al. Humoral immune response to circulating SARS-CoV-2 variants elicited by inactivated and RBD-subunit vaccines. Cell Res. 31, 732–741 (2021). (PMID: 34021265813884410.1038/s41422-021-00514-9) ; Campbell, F. et al. Increased transmissibility and global spread of SARS-CoV- 2 variants of concern as at June 2021. Eurosurveillance 26, 2100509 (2021). (PMID: 821259210.2807/1560-7917.ES.2021.26.24.2100509) ; Bao, L. et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583, 830–833 (2020). (PMID: 3238051110.1038/s41586-020-2312-y) ; Chen, F., Tzarum, N., Wilson, I. A. & Law, M. VH1-69 antiviral broadly neutralizing antibodies: genetics, structures, and relevance to rational vaccine design. Curr. Opin. Virol. 34, 149–159 (2019). (PMID: 30884330726600610.1016/j.coviro.2019.02.004) ; Xiong, X. et al. A thermostable, closed SARS-CoV-2 spike protein trimer. Nat. Struct. Mol. Biol. 27, 934–941 (2020). (PMID: 32737467711638810.1038/s41594-020-0478-5) ; Rujas, E. et al. Multivalency transforms SARS-CoV-2 antibodies into ultrapotent neutralizers. Nat. Commun. 12, 3661 (2021). (PMID: 34135340820905010.1038/s41467-021-23825-2) ; Zhang, L. et al. A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2. Natl Sci. Rev. 8, nwab053 (2021). (PMID: 34676098808360710.1093/nsr/nwab053) ; Cho, H. et al. Bispecific antibodies targeting distinct regions of the spike protein potently neutralize SARS-CoV-2 variants of concern. Sci. Transl. Med. 13, eabj5413 (2021). (PMID: 3451951710.1126/scitranslmed.abj5413) ; Li, D. et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and neutralizing antibodies. Cell 184, 4203–4219.e32 (2021). (PMID: 34242577823296910.1016/j.cell.2021.06.021) ; Jones, B. E. et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci. Transl. Med. 13, eabf1906 (2021). (PMID: 33820835828431110.1126/scitranslmed.abf1906) ; Zhou, X. et al. Diverse immunoglobulin gene usage and convergent epitope targeting in neutralizing antibody responses to SARS-CoV-2. Cell Rep. 35, 109109 (2021). (PMID: 33932326806488910.1016/j.celrep.2021.109109) ; Scheid, J. F. et al. B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell 184, 3205–3221.e24 (2021). (PMID: 34015271806483510.1016/j.cell.2021.04.032) ; Wang, S. et al. Antibody-dependent enhancement (ADE) of SARS-CoV-2 pseudoviral infection requires FcγRIIB and virus-antibody complex with bivalent interaction. Commun. Biol. 5, 262 (2022). (PMID: 35332252894827810.1038/s42003-022-03207-0) ; Starr, T. N. et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape. Nature 597, 97–102 (2021). (PMID: 34261126928288310.1038/s41586-021-03807-6) ; Muecksch, F. et al. Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity 54, 1853–1868.e7 (2021). (PMID: 34331873832333910.1016/j.immuni.2021.07.008) ; Li, T. et al. Uncovering a conserved vulnerability site in SARS-CoV-2 by a human antibody. EMBO Mol. Med. 13, e14544 (2021). (PMID: 34672091864666010.15252/emmm.202114544) ; Tortorici, M. A. et al. Broad sarbecovirus neutralization by a human monoclonal antibody. Nature 597, 103–108 (2021). (PMID: 34280951934143010.1038/s41586-021-03817-4) ; Cameroni, E. et al. Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature 602, 664–670 (2022). (PMID: 3501619510.1038/s41586-021-04386-2) ; Niu, X. et al. Longitudinal analysis of T and B cell receptor repertoire transcripts reveal dynamic immune response in COVID-19 patients. Front. Immunol. 11, 582010 (2020). (PMID: 33117392756136510.3389/fimmu.2020.582010) ; Yan, Q. et al. Germline IGHV3-53-encoded RBD-targeting neutralizing antibodies are commonly present in the antibody repertoires of COVID-19 patients. Emerg. Microbes Infect. 10, 1097–1111 (2021). (PMID: 33944697818352110.1080/22221751.2021.1925594) ; Zhang, Y. et al. Analysis of B cell receptor repertoires reveals key signatures of systemic B cell response after SARS-CoV-2 infection. J. Virol. https://doi.org/10.1128/jvi.01600-21 (2021). ; Zhou, X. et al. Molecular deconvolution of the neutralizing antibodies induced by an inactivated SARS-CoV-2 virus vaccine. Protein Cell 12, 818–823 (2021). (PMID: 33909239808048210.1007/s13238-021-00840-z) ; Kim, S. I. L. et al. Stereotypic neutralizing V H antibodies against SARS-CoV-2 spike protein receptor binding domain in patients with COVID-19 and healthy individuals. Sci. Transl. Med. 13, eabd6990 (2021). (PMID: 33397677787533210.1126/scitranslmed.abd6990) ; Wang, Z. et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature 595, 426–431 (2021). (PMID: 34126625827757710.1038/s41586-021-03696-9) ; Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021). (PMID: 33461210822108210.1038/s41586-021-03207-w) ; Wang, Z. et al. mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 592, 616–622 (2021). (PMID: 33567448850393810.1038/s41586-021-03324-6) ; Liu, C. et al. Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell 184, 4220–4236.e13 (2021). (PMID: 34242578821833210.1016/j.cell.2021.06.020) ; McCallum, M. et al. Molecular basis of immune evasion by the Delta and Kappa SARS-CoV-2 variants. Science https://doi.org/10.1126/science.abl8506 (2021). ; Deng, X. et al. Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell 184, 3426–3437.e8 (2021). (PMID: 33991487805773810.1016/j.cell.2021.04.025) ; Tchesnokova, V. et al. Acquisition of the L452R mutation in the ACE2-binding interface of spike protein triggers recent massive expansion of SARS-CoV-2 variants. J. Clin. Microbiol. 59, e0092121 (2021). (PMID: 3437953110.1128/JCM.00921-21) ; Kaku, C. I. et al. Recall of pre-existing cross-reactive B cell memory following Omicron BA.1 breakthrough infection. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abq3511 (2022). ; Novazzi, F. et al. A cluster of SARS-COV-2 Delta variant of concern additionally harboring F490S, Northern Lombardy, Italy. Int. J. Infect. Dis. 116, 271–272 (2022). (PMID: 34995777873126410.1016/j.ijid.2021.12.362) ; Li, Q. et al. Antigenicity comparison of SARS-CoV-2 Omicron sublineages with other variants contained multiple mutations in RBD. MedComm 3, e130 (2022). (PMID: 35434713899461710.1002/mco2.130) ; SARS-CoV-2 Variants of Concern and Variants Under Investigation in England: Technical Briefing 40 (UK Health Security Agency, 2022); https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1067672/Technical-Briefing-40-8April2022.pdf. ; Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature https://doi.org/10.1038/s41586-022-04980-y (2022). ; Sun, J. et al. Generation of a broadly useful model for COVID-19 pathogenesis, vaccination, and treatment. Cell 182, 734–743.e5 (2020). (PMID: 32643603728424010.1016/j.cell.2020.06.010) ; Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020). (PMID: 32015507709541810.1038/s41586-020-2012-7) ; Hsieh, C. L. et al. Structure-based design of prefusion-stabilized SARS-CoV-2 spikes. Science 369, 1501–1505 (2020). (PMID: 3270390610.1126/science.abd0826) ; Qu, K. et al. Engineered disulfide reveals structural dynamics of locked SARS-CoV-2 spike. PLoS Pathog. 18, e1010583 (2022). (PMID: 35905112936516010.1371/journal.ppat.1010583) ; Carnell, G. W. et al. SARS-CoV-2 spike protein stabilized in the closed state induces potent neutralizing responses. J. Virol. 95, e0020321 (2021). (PMID: 3396305510.1128/JVI.00203-21) ; Feng, L. et al. An adenovirus-vectored COVID-19 vaccine confers protection from SARS-COV-2 challenge in rhesus macaques. Nat. Commun. 11, 4207 (2020). (PMID: 32826924744280310.1038/s41467-020-18077-5) ; Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). (PMID: 1618256310.1016/j.jsb.2005.07.007) ; Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). (PMID: 30412051625042510.7554/eLife.42166) ; Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020). (PMID: 32148853705537310.1107/S2052252520000081) ; Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193) ; Tegunov, D. & Cramer, P. Real-time cryo-electron microscopy data preprocessing with Warp. Nat. Methods 16, 1146–1152 (2019). (PMID: 31591575685886810.1038/s41592-019-0580-y) ; Lan, J. et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 581, 215–220 (2020). (PMID: 3222517610.1038/s41586-020-2180-5) ; Yu, F. et al. A potent germline-like human monoclonal antibody targets a pH-sensitive epitope on H7N9 influenza hemagglutinin. Cell Host Microbe 22, 471–483.e5 (2017). (PMID: 28966056629073810.1016/j.chom.2017.08.011) ; Chan, J. C. Y. et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA 106, 9820–9825 (2009). (PMID: 19443683268254210.1073/pnas.0903849106) ; Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493) ; Kidmose, R. T. et al. Namdinator - automatic molecular dynamics flexible fitting of structural models into cryo-EM and crystallography experimental maps. IUCrJ 6, 526–531 (2019). (PMID: 31316797660862510.1107/S2052252519007619) ; Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018). (PMID: 10.1107/S2059798318006551) ; Krissinel, E. Macromolecular complexes in crystals and solutions. Acta Crystallogr. D 67, 376–385 (2011). (PMID: 21460456306975310.1107/S0907444911007232) ; Pettersen, E. F. et al. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084) ; Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015). (PMID: 2592407110.1038/nmeth.3364) ; Wu, Y. et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Science 368, 1274–1278 (2020). (PMID: 32404477722372210.1126/science.abc2241) ; Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020). (PMID: 3242264510.1038/s41586-020-2349-y) ; Yuan, M. et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science 368, 630–633 (2020). (PMID: 32245784716439110.1126/science.abb7269) ; Matsuyama, S. & Taguchi, F. Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis. J. Virol. 83, 11133–11141 (2009). (PMID: 19706706277276510.1128/JVI.00959-09) ; Walls, A. C. et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell 176, 1026–1039.e15 (2019). (PMID: 30712865675113610.1016/j.cell.2018.12.028)
  • Grant Information: 210711/Z/18/Z United Kingdom WT_ Wellcome Trust; MC_UP_A025_1011 United Kingdom MRC_ Medical Research Council
  • Substance Nomenclature: 0 (Antibodies, Viral) ; 0 (Epitopes) ; 0 (Spike Glycoprotein, Coronavirus) ; 0 (spike protein, SARS-CoV-2)
  • SCR Organism: SARS-CoV-2 variants
  • Entry Date(s): Date Created: 20220923 Date Completed: 20220930 Latest Revision: 20240306
  • Update Code: 20240306
  • PubMed Central ID: PMC9519457

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -