Zum Hauptinhalt springen

c-Met Signaling as a Therapeutic Target in Head and Neck Cancer.

Centuori, SM ; Bauman, JE
In: Cancer journal (Sudbury, Mass.), Jg. 28 (2022-09-01), Heft 5, S. 346-353
academicJournal

Titel:
c-Met Signaling as a Therapeutic Target in Head and Neck Cancer.
Autor/in / Beteiligte Person: Centuori, SM ; Bauman, JE
Zeitschrift: Cancer journal (Sudbury, Mass.), Jg. 28 (2022-09-01), Heft 5, S. 346-353
Veröffentlichung: 2007- : Sudbury, MA : Lippincott Williams & Wilkins ; <i>Original Publication</i>: Sudbury, MA : Jones and Bartlett Publishers, c2000-, 2022
Medientyp: academicJournal
ISSN: 1540-336X (electronic)
DOI: 10.1097/PPO.0000000000000619
Schlagwort:
  • Antibodies, Monoclonal therapeutic use
  • Cell Line, Tumor
  • Cetuximab pharmacology
  • Cetuximab therapeutic use
  • ErbB Receptors genetics
  • ErbB Receptors metabolism
  • Hepatocyte Growth Factor genetics
  • Hepatocyte Growth Factor metabolism
  • Hepatocyte Growth Factor therapeutic use
  • Humans
  • Ligands
  • Proto-Oncogene Proteins c-met genetics
  • Proto-Oncogene Proteins c-met metabolism
  • Squamous Cell Carcinoma of Head and Neck drug therapy
  • Tumor Microenvironment
  • Carcinoma, Squamous Cell
  • Head and Neck Neoplasms drug therapy
  • Head and Neck Neoplasms genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Cancer J] 2022 Sep-Oct 01; Vol. 28 (5), pp. 346-353.
  • MeSH Terms: Carcinoma, Squamous Cell* ; Head and Neck Neoplasms* / drug therapy ; Head and Neck Neoplasms* / genetics ; Antibodies, Monoclonal / therapeutic use ; Cell Line, Tumor ; Cetuximab / pharmacology ; Cetuximab / therapeutic use ; ErbB Receptors / genetics ; ErbB Receptors / metabolism ; Hepatocyte Growth Factor / genetics ; Hepatocyte Growth Factor / metabolism ; Hepatocyte Growth Factor / therapeutic use ; Humans ; Ligands ; Proto-Oncogene Proteins c-met / genetics ; Proto-Oncogene Proteins c-met / metabolism ; Squamous Cell Carcinoma of Head and Neck / drug therapy ; Tumor Microenvironment
  • References: Cancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–582. ; Jin N, Keam B, Cho J, et al. Therapeutic implications of activating noncanonical PIK3CA mutations in head and neck squamous cell carcinoma. J Clin Invest. 2021;131:e150335. ; Bhatia A. Targeting epidermal growth factor receptor in head and neck cancer. Cancer J. 2022;28:331–338. ; Nakamura T, Teramoto H, Ichihara A. Purification and characterization of a growth factor from rat platelets for mature parenchymal hepatocytes in primary cultures. Proc Natl Acad Sci U S A. 1986;83:6489–6493. ; Stoker M, Gherardi E, Perryman M, et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature. 1987;327:239–242. ; Cooper CS, Park M, Blair DG, et al. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature. 1984;311:29–33. ; Morello S, Olivero M, Aimetti M, et al. MET receptor is overexpressed but not mutated in oral squamous cell carcinomas. J Cell Physiol. 2001;189:285–290. ; Seiwert TY, Jagadeeswaran R, Faoro L, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;69:3021–3031. ; Ghadjar P, Blank-Liss W, Simcock M, et al. MET Y1253D–activating point mutation and development of distant metastasis in advanced head and neck cancers. Clin Exp Metastasis. 2009;26:809–815. ; Aebersold DM, Landt O, Berthou S, et al. Prevalence and clinical impact of Met Y1253D–activating point mutation in radiotherapy-treated squamous cell cancer of the oropharynx. Oncogene. 2003;22:8519–8523. ; Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–1157. ; Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–1160. ; Kong-Beltran M, Seshagiri S, Zha J, et al. Somatic mutations lead to an oncogenic deletion of Met in lung cancer. Cancer Res. 2006;66:283–289. ; Knowles LM, Stabile LP, Egloff AM, et al. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin Cancer Res. 2009;15:3740–3750. ; Baschnagel AM, Williams L, Hanna A, et al. c-Met expression is a marker of poor prognosis in patients with locally advanced head and neck squamous cell carcinoma treated with chemoradiation. Int J Radiat Oncol Biol Phys. 2014;88:701–707. ; Kim JH, Kim BJ, Kim HS. Clinicopathological impacts of high c-Met expression in head and neck squamous cell carcinoma: a meta-analysis and review. Oncotarget. 2017;8:113120–113128. ; Madoz-Gurpide J, Zazo S, Chamizo C, et al. Activation of MET pathway predicts poor outcome to cetuximab in patients with recurrent or metastatic head and neck cancer. J Transl Med. 2015;13:282. ; Leef G, Thomas SM. Molecular communication between tumor-associated fibroblasts and head and neck squamous cell carcinoma. Oral Oncol. 2013;49:381–386. ; Kumar D, New J, Vishwakarma V, et al. Cancer-associated fibroblasts drive glycolysis in a targetable signaling loop implicated in head and neck squamous cell carcinoma progression. Cancer Res. 2018;78:3769–3782. ; Szabo R, Rasmussen AL, Moyer AB, et al. c-Met–induced epithelial carcinogenesis is initiated by the serine protease matriptase. Oncogene. 2011;30:2003–2016. ; Marshall DD, Kornberg LJ. Overexpression of scatter factor and its receptor (c-Met) in oral squamous cell carcinoma. Laryngoscope. 1998;108:1413–1417. ; Cortesina G, Martone T, Galeazzi E, et al. Staging of head and neck squamous cell carcinoma using the MET oncogene product as marker of tumor cells in lymph node metastases. Int J Cancer. 2000;89:286–292. ; Goldson TM, Han Y, Knight KB, et al. Clinicopathological predictors of lymphatic metastasis in HNSCC: implications for molecular mechanisms of metastatic disease. J Exp Ther Oncol. 2010;8:211–221. ; Peruzzi B, Bottaro DP. Targeting the c-Met signaling pathway in cancer. Clin Cancer Res. 2006;12:3657–3660. ; Mandal M, Myers JN, Lippman SM, et al. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer. 2008;112:2088–2100. ; Basu D, Nguyen TT, Montone KT, et al. Evidence for mesenchymal-like sub-populations within squamous cell carcinomas possessing chemoresistance and phenotypic plasticity. Oncogene. 2010;29:4170–4182. ; Worden B, Yang XP, Lee TL, et al. Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through EGR-1 in head and neck squamous cell carcinoma. Cancer Res. 2005;65:7071–7080. ; Xu H, Stabile LP, Gubish CT, et al. Dual blockade of EGFR and c-Met abrogates redundant signaling and proliferation in head and neck carcinoma cells. Clin Cancer Res. 2011;17:4425–4438. ; Wilson TR, Fridlyand J, Yan Y, et al. Widespread potential for growth-factor–driven resistance to anticancer kinase inhibitors. Nature. 2012;487:505–509. ; Yegodayev KM, Novoplansky O, Golden A, et al. TGF-beta–activated cancer-associated fibroblasts limit cetuximab efficacy in preclinical models of head and neck cancer. Cancers (Basel). 2020;12:339. ; Bhat AA, Yousuf P, Wani NA, et al. Tumor microenvironment: an evil nexus promoting aggressive head and neck squamous cell carcinoma and avenue for targeted therapy. Signal Transduct Target Ther. 2021;6:12. ; Arnold L, Enders J, Thomas SM. Activated HGF–c-Met axis in head and neck cancer. Cancers (Basel). 2017;9:169. ; Du H, Che G. Genetic alterations and epigenetic alterations of cancer-associated fibroblasts. Oncol Lett. 2017;13:3–12. ; Curry JM, Sprandio J, Cognetti D, et al. Tumor microenvironment in head and neck squamous cell carcinoma. Semin Oncol. 2014;41:217–234. ; Erez N, Truitt M, Olson P, et al. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB–dependent manner. Cancer Cell. 2010;17:135–147. ; Wheeler SE, Shi H, Lin F, et al. Enhancement of head and neck squamous cell carcinoma proliferation, invasion, and metastasis by tumor-associated fibroblasts in preclinical models. Head Neck. 2014;36:385–392. ; Boschert V, Klenk N, Abt A, et al. The influence of Met receptor level on HGF-induced glycolytic reprogramming in head and neck squamous cell carcinoma. Int J Mol Sci. 2020;21:471. ; Lewis MP, Lygoe KA, Nystrom ML, et al. Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer. 2004;90:822–832. ; Rosenthal E, McCrory A, Talbert M, et al. Elevated expression of TGF-beta1 in head and neck cancer–associated fibroblasts. Mol Carcinog. 2004;40:116–121. ; Takahashi H, Sakakura K, Kawabata-Iwakawa R, et al. Immunosuppressive activity of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2015;64:1407–1417. ; Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20:131. ; Zhang A, Qian Y, Ye Z, et al. Cancer-associated fibroblasts promote M2 polarization of macrophages in pancreatic ductal adenocarcinoma. Cancer Med. 2017;6:463–470. ; Kinoshita T, Ishii G, Hiraoka N, et al. Forkhead box P3 regulatory T cells coexisting with cancer associated fibroblasts are correlated with a poor outcome in lung adenocarcinoma. Cancer Sci. 2013;104:409–415. ; Yen BL, Yen ML, Hsu PJ, et al. Multipotent human mesenchymal stromal cells mediate expansion of myeloid-derived suppressor cells via hepatocyte growth factor/c-Met and STAT3. Stem Cell Reports. 2013;1:139–151. ; Raj S, Kesari KK, Kumar A, et al. Molecular mechanism(s) of regulation(s) of c-Met/HGF signaling in head and neck cancer. Mol Cancer. 2022;21:31. ; Boschert V, Teusch J, Aljasem A, et al. HGF-induced PD-L1 expression in head and neck cancer: preclinical and clinical findings. Int J Mol Sci. 2020;21:8770. ; Balan M, Mier y Teran E, Waaga-gasser AM, et al. Novel roles of c-Met in the survival of renal cancer cells through the regulation of HO-1 and PD-L1 expression. J Biol Chem. 2015;290:8110–8120. ; Tamura S, Sugawara T, Tokoro Y, et al. Expression and function of c-Met, a receptor for hepatocyte growth factor, during T-cell development. Scand J Immunol. 1998;47:296–301. ; Kumar D, Kandl C, Hamilton CD, et al. Mitigation of tumor-associated fibroblast-facilitated head and neck cancer progression with anti-hepatocyte growth factor antibody ficlatuzumab. JAMA Otolaryngol Head Neck Surg. 2015;141:1133–1139. ; Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell–derived lactic acid on human T cells. Blood. 2007;109:3812–3819. ; Walenta S, Salameh A, Lyng H, et al. Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol. 1997;150:409–415. ; Blatt S, Voelxen N, Sagheb K, et al. Lactate as a predictive marker for tumor recurrence in patients with head and neck squamous cell carcinoma (HNSCC) post radiation: a prospective study over 15 years. Clin Oral Investig. 2016;20:2097–2104. ; Nagata T, Murata K, Murata R, et al. Hepatocyte growth factor regulated tyrosine kinase substrate in the peripheral development and function of B-cells. Biochem Biophys Res Commun. 2014;443:351–356. ; van der Voort R, Taher TE, Keehnen RM, et al. Paracrine regulation of germinal center B cell adhesion through the c-Met–hepatocyte growth factor/scatter factor pathway. J Exp Med. 1997;185:2121–2131. ; Hladikova K, Koucky V, Boucek J, et al. Tumor-infiltrating B cells affect the progression of oropharyngeal squamous cell carcinoma via cell-to-cell interactions with CD8(+) T cells. J Immunother Cancer. 2019;7:261. ; Grenier A, Chollet-Martin S, Crestani B, et al. Presence of a mobilizable intracellular pool of hepatocyte growth factor in human polymorphonuclear neutrophils. Blood. 2002;99:2997–3004. ; Mine S, Tanaka Y, Suematu M, et al. Hepatocyte growth factor is a potent trigger of neutrophil adhesion through rapid activation of lymphocyte function-associated antigen-1. Lab Invest. 1998;78:1395–1404. ; Dumitru CA, Bankfalvi A, Gu X, et al. Neutrophils activate tumoral CORTACTIN to enhance progression of orohypopharynx carcinoma. Front Immunol. 2013;4:33. ; Finisguerra V, Di Conza G, Di Matteo M, et al. MET is required for the recruitment of anti-tumoural neutrophils. Nature. 2015;522:349–353. ; Chen PM, Liu KJ, Hsu PJ, et al. Induction of immunomodulatory monocytes by human mesenchymal stem cell–derived hepatocyte growth factor through ERK1/2. J Leukoc Biol. 2014;96:295–303. ; Kurz SM, Diebold SS, Hieronymus T, et al. The impact of c-Met/scatter factor receptor on dendritic cell migration. Eur J Immunol. 2002;32:1832–1838. ; Benkhoucha M, Santiago-Raber ML, Schneiter G, et al. Hepatocyte growth factor inhibits CNS autoimmunity by inducing tolerogenic dendritic cells and CD25+ Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A. 2010;107:6424–6429. ; Baek JH, Birchmeier C, Zenke M, et al. The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J Immunol. 2012;189:1699–1707. ; Ludewig B, Graf D, Gelderblom HR, et al. Spontaneous apoptosis of dendritic cells is efficiently inhibited by TRAP (CD40-ligand) and TNF-alpha, but strongly enhanced by interleukin-10. Eur J Immunol. 1995;25:1943–1950. ; Seiwert T, Sarantopoulos J, Kallender H, et al. Phase II trial of single-agent foretinib (GSK1363089) in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Invest New Drugs. 2013;31:417–424. ; Saba NF, Ekpenyong A, McCook-Veal A, et al. A phase II trial of pembrolizumab and cabozantinib in patients with recurrent metastatic head and neck squamous cell carcinoma. J Clin Oncol. 2022;40(suppl 16):6008. ; Kochanny SE, Worden FP, Adkins DR, et al. A randomized phase 2 network trial of tivantinib plus cetuximab versus cetuximab in patients with recurrent/metastatic head and neck squamous cell carcinoma. Cancer. 2020;126:2146–2152. ; Bauman JE, Ohr J, Gooding WE, et al. Phase I study of ficlatuzumab and cetuximab in cetuximab-resistant, recurrent/metastatic head and neck cancer. Cancers (Basel). 2020;12:1537. ; Bauman JE, Saba NF, Roe D, et al. Randomized phase II trial of ficlatuzumab with or without cetuximab in pan-refractory, advanced head and neck squamous cell carcinoma. J Clin Oncol. 2021;39(suppl 15). ; Wolf J, Seto T, Han JY, et al. Capmatinib in MET exon 14–mutated or MET-amplified non–small-cell lung cancer. N Engl J Med. 2020;383:944–957. ; Paik PK, Felip E, Veillon R, et al. Tepotinib in non–small-cell lung cancer with MET exon 14 skipping mutations. N Engl J Med. 2020;383:931–943. ; Nisa L, Francica P, Giger R, et al. Targeting the MET receptor tyrosine kinase as a strategy for radiosensitization in locoregionally advanced head and neck squamous cell carcinoma. Mol Cancer Ther. 2020;19:614–626. ; Sequist LV, Han JY, Ahn MJ, et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non–small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020;21:373–386. ; Liu L, Shi H, Liu Y, et al. Synergistic effects of foretinib with HER-targeted agents in MET and HER1- or HER2-coactivated tumor cells. Mol Cancer Ther. 2011;10:518–530. ; Fu Y, Peng Y, Zhao S, et al. Combination Foretinib and anti–PD-1 antibody immunotherapy for colorectal carcinoma. Front Cell Dev Biol. 2021;9:689727. ; Wang D, Lu Y, Nannapaneni S, et al. Combinatorial approaches targeting the EGFR family and c-Met in SCCHN. Oral Oncol. 2021;112:105074. ; Kwilas AR, Ardiani A, Donahue RN, et al. Dual effects of a targeted small-molecule inhibitor (cabozantinib) on immune-mediated killing of tumor cells and immune tumor microenvironment permissiveness when combined with a cancer vaccine. J Transl Med. 2014;12:294. ; Liu H, Sun S, Wang G, et al. Tyrosine kinase inhibitor cabozantinib inhibits murine renal cancer by activating innate and adaptive immunity. Front Oncol. 2021;11:663517. ; Katayama R, Aoyama A, Yamori T, et al. Cytotoxic activity of tivantinib (ARQ 197) is not due solely to c-Met inhibition. Cancer Res. 2013;73:3087–3096. ; Catenacci DVT, Tebbutt NC, Davidenko I, et al. Rilotumumab plus epirubicin, cisplatin, and capecitabine as first-line therapy in advanced MET-positive gastric or gastro-oesophageal junction cancer (RILOMET-1): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:1467–1482. ; Spigel DR, Ervin TJ, Ramlau RA, et al. Randomized phase II trial of onartuzumab in combination with erlotinib in patients with advanced non–small-cell lung cancer. J Clin Oncol. 2013;31:4105–4114. ; Wang J, Anderson MG, Oleksijew A, et al. ABBV-399, a c-Met antibody-drug conjugate that targets both MET-amplified and c-Met–overexpressing tumors, irrespective of MET pathway dependence. Clin Cancer Res. 2017;23:992–1000. ; Strickler JH, Weekes CD, Nemunaitis J, et al. First-in-human phase I, dose-escalation and -expansion study of telisotuzumab vedotin, an antibody-drug conjugate targeting c-Met, in patients with advanced solid tumors. J Clin Oncol. 2018;36:3298–3306. ; Waqar SN, Redman MW, Arnold SM, et al. A phase II study of telisotuzumab vedotin in patients with c-Met–positive stage IV or recurrent squamous cell lung cancer (LUNG-MAP sub-study S1400K, NCT03574753). Clin Lung Cancer. 2021;22:170–177. ; Park K, Haura EB, Leighl NB, et al. Amivantamab in EGFR exon 20 insertion-mutated non–small-cell lung cancer progressing on platinum chemotherapy: initial results from the CHRYSALIS phase I study. J Clin Oncol. 2021;39:3391–3402. ; Grugan KD, Dorn K, Jarantow SW, et al. Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs. 2017;9:114–126. ; Yun J, Lee SH, Kim SY, et al. Antitumor activity of amivantamab (JNJ-61186372), an EGFR-MET bispecific antibody, in diverse models of EGFR exon 20 insertion-driven NSCLC. Cancer Discov. 2020;10:1194–1209. ; Thayaparan T, Petrovic RM, Achkova DY, et al. CAR T-cell immunotherapy of MET-expressing malignant mesothelioma. Onco Targets Ther. 2017;6:e1363137. ; Min J, Long C, Zhang L, et al. c-Met specific CAR-T cells as a targeted therapy for non–small cell lung cancer cell A549. Bioengineered. 2022;13:9216–9232. ; Mori JI, Adachi K, Sakoda Y, et al. Anti-tumor efficacy of human anti–c-Met CAR-T cells against papillary renal cell carcinoma in an orthotopic model. Cancer Sci. 2021;112:1417–1428. ; Kang CH, Kim Y, Lee DY, et al. c-Met–specific chimeric antigen receptor T cells demonstrate anti-tumor effect in c-Met positive gastric cancer. Cancers (Basel). 2021;13:5738. ; Tchou J, Zhao Y, Levine BL, et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res. 2017;5:1152–1161. ; Jiang W, Li T, Guo J, et al. Bispecific c-Met/PD-L1 CAR-T cells have enhanced therapeutic effects on hepatocellular carcinoma. Front Oncol. 2021;11:546586.
  • Substance Nomenclature: 0 (Antibodies, Monoclonal) ; 0 (Ligands) ; 67256-21-7 (Hepatocyte Growth Factor) ; EC 2.7.10.1 (ErbB Receptors) ; EC 2.7.10.1 (Proto-Oncogene Proteins c-met) ; PQX0D8J21J (Cetuximab)
  • Entry Date(s): Date Created: 20220927 Date Completed: 20220929 Latest Revision: 20221012
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -