Zum Hauptinhalt springen

BTB domains: A structural view of evolution, multimerization, and protein-protein interactions.

Bonchuk, A ; Balagurov, K ; et al.
In: BioEssays : news and reviews in molecular, cellular and developmental biology, Jg. 45 (2023-02-01), Heft 2, S. e2200179
Online academicJournal

Titel:
BTB domains: A structural view of evolution, multimerization, and protein-protein interactions.
Autor/in / Beteiligte Person: Bonchuk, A ; Balagurov, K ; Georgiev, P
Link:
Zeitschrift: BioEssays : news and reviews in molecular, cellular and developmental biology, Jg. 45 (2023-02-01), Heft 2, S. e2200179
Veröffentlichung: <2005->: Hoboken, N.J. : Wiley ; <i>Original Publication</i>: Cambridge, UK : Published for the ICSU Press by Cambridge University Press, c1984-, 2023
Medientyp: academicJournal
ISSN: 1521-1878 (electronic)
DOI: 10.1002/bies.202200179
Schlagwort:
  • Humans
  • Protein Binding
  • BTB-POZ Domain
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Review; Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Bioessays] 2023 Feb; Vol. 45 (2), pp. e2200179. <i>Date of Electronic Publication: </i>2022 Nov 30.
  • MeSH Terms: BTB-POZ Domain* ; Humans ; Protein Binding
  • References: Zollman, S., Godt, D., Prive, G. G., Couderc, J. L., & Laski, F. A. (1994). The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. PNAS, 91, 10717-10721. ; Godt, D., Couderc, J. L., Cramton, S. E., & Laski, F. A. (1993). Pattern formation in the limbs of Drosophila: bric a brac is expressed in both a gradient and a wave-like pattern and is required for specification and proper segmentation of the tarsus. Development (Cambridge, England), 119, 799-812. ; DiBello, P. R., Withers, D. A., Bayer, C. A., Fristrom, J. W., & Guild, G. M. (1991). The Drosophila broad-complex encodes a family of related proteins containing zinc fingers. Genetics, 129, 385-397. ; Harrison, S. D., & Travers, A. A. (1990). The tramtrack gene encodes a Drosophila finger protein that interacts with the ftz transcriptional regulatory region and shows a novel embryonic expression pattern. Embo Journal, 9, 207-216. ; Chaharbakhshi, E., & Jemc, J. C. (2016). Broad-complex, tramtrack, and bric-a-brac (BTB) proteins: Critical regulators of development. Genesis (New York, N.Y.: 2000) (New York, NY : 2000), 54, 505-518. ; Stogios, P. J., Downs, G. S., Jauhal, J. J., Nandra, S. K., & Prive, G. G. (2005). Sequence and structural analysis of BTB domain proteins. Genome Biology, 6, R82. ; Perez-Torrado, R., Yamada, D., & Defossez, P A. (2006). Born to bind: The BTB protein-protein interaction domain. Bioessays, 28, 1194-1202. ; Mathew, R., Seiler, M. P., Scanlon, S. T., Mao, A. P., Constantinides, M. G., Bertozzi-Villa, C., Singer, J. D., & Bendelac, A. (2012). BTB-ZF factors recruit the E3 ligase cullin 3 to regulate lymphoid effector programs. Nature, 491, 618-621. ; Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583-589. ; Zheng, N., Schulman, B. A., Song, L., Miller, J. J., Jeffrey, P. D., Wang, P., Chu, C., Koepp, D. M., Elledge, S. J., Pagano, M., Conaway, R. C., Conaway, J. W., Harper, J. W., & Pavletich, N P. (2002). Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature, 416, 703-709. ; Schulman, B. A., Carrano, A. C., Jeffrey, P. D., Bowen, Z., Kinnucan, E. R., Finnin, M. S., Elledge, S. J., Harper, J. W., Pagano, M., & Pavletich, N P. (2000). Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature, 408, 381-386. ; Kim, Y. K., Kwak, M. J., Ku, B., Suh, H. Y., Joo, K., Lee, J., Jung, J. U., & Oh, B H. (2013). Structural basis of intersubunit recognition in elongin BC-cullin 5-SOCS box ubiquitin-protein ligase complexes. Acta Crystallographica Section D, Biological Crystallography, 69, 1587-1597. ; Nguyen, H. C., Yang, H., Fribourgh, J. L., Wolfe, L. S., & Xiong, Y. (2015). Insights into Cullin-RING E3 ubiquitin ligase recruitment: Structure of the VHL-EloBC-Cul2 complex. Structure (London, England), 23, 441-449. ; Ahmad, K. F., Engel, C. K., & Prive, G. G. (1998). Crystal structure of the BTB domain from PLZF. PNAS, 95, 12123-12128. ; Zhuang, M., Calabrese, M. F., Liu, J., Waddell, M. B., Nourse, A., Hammel, M., Miller, D. J., Walden, H., Duda, D. M., Seyedin, S. N., Hoggard, T., Harper, J. W., White, K. P., & Schulman, B. A. (2009). Structures of SPOP-substrate complexes: Insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Molecular Cell, 36, 39-50. ; Canning, P., Cooper, C. D., Krojer, T., Murray, J. W., Pike, A. C., Chaikuad, A., Keates, T., Thangaratnarajah, C., Hojzan, V., Ayinampudi, V., Marsden, B. D., Gileadi, O., Knapp, S., von Delft, F., & Bullock, A. N. (2013). Structural basis for Cul3 protein assembly with the BTB-Kelch family of E3 ubiquitin ligases. Journal of Biological Chemistry, 288, 7803-7814. ; Nakayama, N., Sakashita, G., Nagata, T., Kobayashi, N., Yoshida, H., Park, S. Y., Nariai, Y., Kato, H., Obayashi, E., Nakayama, K., Kyo, S., & Urano, T. (2020). Nucleus Accumbens-associated protein 1 binds DNA directly through the BEN domain in a sequence-specific manner. Biomedicines, 8, 608. ; Zhou, Y., Wu, H., Zhao, M., Chang, C., & Lu, Q. (2016). The Bach family of transcription factors: A comprehensive review. Clinical Reviews in Allergy & Immunology, 50, 345-356. ; Bonchuk, A., Balagurov, K., Boyko, K., Sluchanko, N., Khrustaleva, A., Burtseva, A., Kuzmina, N., Arkova, O., Khalisova, K., Popov, V., & Georgiev, P. (2022). The Tramtrack group BTB protein domains are arthropoda-specific multimerization modules. bioRxiv, https://biorxiv.org/cgi/content/short/20220901506177v1. ; Bonchuk, A., Denisov, S., Georgiev, P., & Maksimenko, O. (2011). Drosophila BTB/POZ domains of “ttk group” can form multimers and selectively interact with each other. Journal of Molecular Biology, 412, 423-436. ; Espinas, M. L., Jimenez-Garcia, E., Vaquero, A., Canudas, S., Bernues, J., & Azorin, F. (1999). The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. Journal of Biological Chemistry, 274, 16461-16469. ; Katsani, K. R., Hajibagheri, M. A., & Verrijzer, C P. (1999). Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. Embo Journal, 18, 698-708. ; Pointud, J. C., Larsson, J., Dastugue, B., & Couderc, J L. (2001). The BTB/POZ domain of the regulatory proteins Bric a brac 1 (BAB1) and Bric a brac 2 (BAB2) interacts with the novel Drosophila TAF(II) factor BIP2/dTAF(II)155. Developmental Biology, 237, 368-380. ; Huynh, K. D., & Bardwell, V J. (1998). The BCL-6 POZ domain and other POZ domains interact with the co-repressors N-CoR and SMRT. Oncogene, 17, 2473-2484. ; Roberts, D., Pedmale, U. V., Morrow, J., Sachdev, S., Lechner, E., Tang, X., Zheng, N., Hannink, M., Genschik, P., & Liscum, E. (2011). Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-Ring E3 ubiquitin ligase CRL3(NPH3). Plant Cell, 23, 3627-3640. ; Christie, J. M., Suetsugu, N., Sullivan, S., & Wada, M. (2018). Shining light on the function of NPH3/RPT2-like proteins in phototropin signaling. Plant Physiology, 176, 1015-1024. ; Mirdita, M., Schutze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods, 19, 679-682. ; Evans, R., O'Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., Yim, J., Ronneberger, O., Bodenstein, S., Zielinski, M., Bridgland, A., Potapenko, A., Cowie, A., Tunyasuvunakool, K., Jain, R., Clancy, E., … Hassabis, D. (2022). Protein complex prediction with AlphaFold-Multimer. bioRxiv, https://www.biorxiv.org/content/101101/20211004463034v2. ; Aravind, L., & Koonin, E. V. (1999). Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. Journal of Molecular Biology, 285, 1353-1361. ; Minor, D. L., Lin, Y. F., Mobley, B. C., Avelar, A., Jan, Y. N., Jan, L. Y., & Berger, J. M. (2000). The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell, 102, 657-670. ; Long, S. B., Tao, X., Campbell, E. B., & MacKinnon, R. (2007). Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature, 450, 376-382. ; Kise, Y., Kasuya, G., Okamoto, H. H., Yamanouchi, D., Kobayashi, K., Kusakizako, T., Nishizawa, T., Nakajo, K., & Nureki, O. (2021). Structural basis of gating modulation of Kv4 channel complexes. Nature, 599, 158-164. ; Dementieva, I. S., Tereshko, V., McCrossan, Z. A., Solomaha, E., Araki, D., Xu, C., Grigorieff, N., & Goldstein, S A. (2009). Pentameric assembly of potassium channel tetramerization domain-containing protein 5. Journal of Molecular Biology, 387, 175-191. ; Ji, A. X., Chu, A., Nielsen, T. K., Benlekbir, S., Rubinstein, J. L., & Prive, G G. (2016). Structural insights into KCTD protein assembly and Cullin3 recognition. Journal of Molecular Biology, 428, 92-107. ; Skoblov, M., Marakhonov, A., Marakasova, E., Guskova, A., Chandhoke, V., Birerdinc, A., & Baranova, A. (2013). Protein partners of KCTD proteins provide insights about their functional roles in cell differentiation and vertebrate development. Bioessays, 35, 586-596. ; Liu, Z., Xiang, Y., & Sun, G. (2013). The KCTD family of proteins: structure, function, disease relevance. Cell & Bioscience, 3, 45. ; Zheng, S., Abreu, N., Levitz, J., & Kruse, A C. (2019). Structural basis for KCTD-mediated rapid desensitization of GABAB signalling. Nature, 567, 127-131. ; Zuo, H., Glaaser, I., Zhao, Y., Kurinov, I., Mosyak, L., Wang, H., Liu, J., Park, J., Frangaj, A., Sturchler, E., Zhou, M., McDonald, P., Geng, Y., Slesinger, P. A., & Fan, Q R. (2019). Structural basis for auxiliary subunit KCTD16 regulation of the GABAB receptor. Pnas U S A, 116, 8370-8379. ; Fritz-Laylin, L. K., Prochnik, S. E., Ginger, M. L., Dacks, J. B., Carpenter, M. L., Field, M. C., Kuo, A., Paredez, A., Chapman, J., Pham, J., Shu, S., Neupane, R., Cipriano, M., Mancuso, J., Tu, H., Salamov, A., Lindquist, E., Shapiro, H., Lucas, S., … Dawson, S. C. (2010). The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell, 140, 631-642. ; King, N., Westbrook, M. J., Young, S. L., Kuo, A., Abedin, M., Chapman, J., Fairclough, S., Hellsten, U., Isogai, Y., Letunic, I., Marr, M., Pincus, D., Putnam, N., Rokas, A., Wright, K. J., Zuzow, R., Dirks, W., Good, M., Goodstein, D., … Rokhsar, D. (2008). The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature, 451, 783-788. ; Srivastava, M., Simakov, O., Chapman, J., Fahey, B., Gauthier, M. E., Mitros, T., Richards, G. S., Conaco, C., Dacre, M., Hellsten, U., Larroux, C., Putnam, N. H., Stanke, M., Adamska, M., Darling, A., Degnan, S. M., Oakley, T. H., Plachetzki, D. C., Zhai, Y., … Rokhsar, D. S. (2010). The Amphimedon queenslandica genome and the evolution of animal complexity. Nature, 466, 720-726. ; Srivastava, M., Begovic, E., Chapman, J., Putnam, N. H., Hellsten, U., Kawashima, T., Kuo, A., Mitros, T., Salamov, A., Carpenter, M. L., Signorovitch, A. Y., Moreno, M. A., Kamm, K., Grimwood, J., Schmutz, J., Shapiro, H., Grigoriev, I. V., Buss, L. W., Schierwater, B., … Rokhsar, D. S. (2008). The Trichoplax genome and the nature of placozoans. Nature, 454, 955-960. ; Guervilly, J. H., Takedachi, A., Naim, V., Scaglione, S., Chawhan, C., Lovera, Y., Despras, E., Kuraoka, I., Kannouche, P., Rosselli, F., & Gaillard, P. H. L. (2015). The SLX4 complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Molecular Cell, 57, 123-137. ; Yin, J., Wan, B., Sarkar, J., Horvath, K., Wu, J., Chen, Y., Cheng, G., Wan, K., Chin, P., Lei, M., & Liu, Y. (2016). Dimerization of SLX4 contributes to functioning of the SLX4-nuclease complex. Nucleic Acids Research, 44, 4871-4880. ; van Geersdaele, L. K., Stead, M. A., Harrison, C. M., Carr, S. B., Close, H. J., Rosbrook, G. O., Connell, S. D., & Wright, S C. (2013). Structural basis of high-order oligomerization of the cullin-3 adaptor SPOP. Acta crystallographica Section D, Biological crystallography, 69, 1677-1684. ; Kreusch, A., Pfaffinger, P. J., Stevens, C. F., & Choe, S. (1998). Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature, 392, 945-948. ; Nanao, M. H., Zhou, W., Pfaffinger, P. J., & Choe, S. (2003). Determining the basis of channel-tetramerization specificity by x-ray crystallography and a sequence-comparison algorithm: Family values (FamVal). PNAS, 100, 8670-8675. ; Stogios, P. J., Cuesta-Seijo, J. A., Chen, L., Pomroy, N. C., & Prive, G G. (2010). Insights into strand exchange in BTB domain dimers from the crystal structures of FAZF and Miz1. Journal of Molecular Biology, 400, 983-997. ; Stead, M. A., & Wright, S C. (2014). Structures of heterodimeric POZ domains of Miz1/BCL6 and Miz1/NAC1. Acta crystallographica Section F Structural Biology Communications, 70, 1591-1596. ; Olivieri, D., Paramanathan, S., Bardet, A. F., Hess, D., Smallwood, S. A., Elling, U., & Betschinger, J. (2021). The BTB-domain transcription factor ZBTB2 recruits chromatin remodelers and a histone chaperone during the exit from pluripotency. Journal of Biological Chemistry, 297, 100947. ; Bertolini, M., Fenzl, K., Kats, I., Wruck, F., Tippmann, F., Schmitt, J., Auburger, J. J., Tans, S., Bukau, B., & Kramer, G. (2021). Interactions between nascent proteins translated by adjacent ribosomes drive homomer assembly. Science, 371, 57-64. ; Mena, E. L., Jevtic, P., Greber, B. J., Gee, C. L., Lew, B. G., Akopian, D., Nogales, E., Kuriyan, J., & Rape, M. (2020). Structural basis for dimerization quality control. Nature, 586, 452-456. ; Stead, M. A., Trinh, C. H., Garnett, J. A., Carr, S. B., Baron, A. J., Edwards, T. A., & Wright, S. C. (2007). A beta-sheet interaction interface directs the tetramerisation of the Miz-1 POZ domain. Journal of Molecular Biology, 373, 820-826. ; Faucheux, M., Roignant, J. Y., Netter, S., Charollais, J., Antoniewski, C., & Theodore, L. (2003). batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Molecular and Cellular Biology, 23, 1181-1195. ; Pagans, S., Ortiz-Lombardia, M., Espinas, M. L., Bernues, J., & Azorin, F. (2002). The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation. Nucleic Acids Research, 30, 4406-4413. ; Schwendemann, A., & Lehmann, M. (2002). Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci. PNAS, 99, 12883-12888. ; Ghetu, A. F., Corcoran, C. M., Cerchietti, L., Bardwell, V. J., Melnick, A., & Prive, G. G. (2008). Structure of a BCOR corepressor peptide in complex with the BCL6 BTB domain dimer. Molecular Cell, 29, 384-391. ; Ahmad, K. F., Melnick, A., Lax, S., Bouchard, D., Liu, J., Kiang, C. L., Mayer, S., Takahashi, S., Licht, J. D., & Prive, G. G. (2003). Mechanism of SMRT corepressor recruitment by the BCL6 BTB domain. Molecular Cell, 12, 1551-1564. ; Zacharchenko, T., & Wright, S. (2021). Functionalization of the BCL6 BTB domain into a noncovalent crystallization chaperone. IUCrJ, 8, 154-160. ; Yoon, H. G., Chan, D. W., Reynolds, A. B., Qin, J.,, & Wong, J. (2003). N-CoR mediates DNA methylation-dependent repression through a methyl CpG binding protein Kaiso. Molecular Cell, 12, 723-734. ; Wong, C. W., & Privalsky, M L. (1998). Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. Journal of Biological Chemistry, 273, 27695-27702. ; Zacharchenko, T., Kalverda, A. P., & Wright, S C. (2022). Structural basis of Apt48 inhibition of the BCL6 BTB domain. Structure (London, England), 30, 396-407. ; Sabirov, M., Popovich, A., Boyko, K., Nikolaeva, A., Kyrchanova, O., Maksimenko, O., Popov, V., Georgiev, P., & Bonchuk, A. (2021). Mechanisms of CP190 interaction with architectural proteins in Drosophila Melanogaster. International Journal of Molecular Sciences, 22, 12400. ; Orth, B., Sander, B., Moglich, A., Diederichs, K., Eilers, M., & Lorenz, S. (2021). Identification of an atypical interaction site in the BTB domain of the MYC-interacting zinc-finger protein 1. Structure (London, England), 29, 1230-1240. ; Bartoi, T., Rigbolt, K. T., Du, D., Kohr, G., Blagoev, B., & Kornau, H C. (2010). GABAB receptor constituents revealed by tandem affinity purification from transgenic mice. Journal of Biological Chemistry, 285, 20625-20633. ; Schwenk, J., Metz, M., Zolles, G., Turecek, R., Fritzius, T., Bildl, W., Tarusawa, E., Kulik, A., Unger, A., Ivankova, K., Seddik, R., Tiao, J. Y., Rajalu, M., Trojanova, J., Rohde, V., Gassmann, M., Schulte, U., Fakler, B., & Bettler, B. (2010). Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature, 465, 231-235. ; Schwenk, J., Perez-Garci, E., Schneider, A., Kollewe, A., Gauthier-Kemper, A., Fritzius, T., Raveh, A., Dinamarca, M. C., Hanuschkin, A., Bildl, W., Klingauf, J., Gassmann, M., Schulte, U., Bettler, B., & Fakler, B. (2016). Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nature Neuroscience, 19, 233-242. ; Bosu, D. R., & Kipreos, E T. (2008). Cullin-RING ubiquitin ligases: global regulation and activation cycles. Cell Division, 3, 7. ; Errington, W. J., Khan, M. Q., Bueler, S. A., Rubinstein, J. L., Chakrabartty, A., & Prive, G. G. (2012). Adaptor protein self-assembly drives the control of a cullin-RING ubiquitin ligase. Structure (London, England), 20, 1141-1153. ; Ji, A., & Prive, G. G. (2013). Crystal structure of KLHL3 in complex with Cullin3. PLoS ONE, 8, e60445. ; Bullock, A. N., Debreczeni, J. E., Edwards, A. M., Sundstrom, M., & Knapp, S. (2006). Crystal structure of the SOCS2-elongin C-elongin B complex defines a prototypical SOCS box ubiquitin ligase. PNAS, 103, 7637-7642. ; Bullock, A. N., Rodriguez, M. C., Debreczeni, J. E., Songyang, Z., & Knapp, S. (2007). Structure of the SOCS4-ElonginB/C complex reveals a distinct SOCS box interface and the molecular basis for SOCS-dependent EGFR degradation. Structure (London, England), 15, 1493-1504. ; Babon, J. J., Sabo, J. K., Soetopo, A., Yao, S., Bailey, M. F., Zhang, J. G., Nicola, N. A., & Norton, R. S. (2008). The SOCS box domain of SOCS3: Structure and interaction with the elonginBC-cullin5 ubiquitin ligase. Journal of Molecular Biology, 381, 928-940. ; Babon, J. J., Sabo, J. K., Zhang, J. G., Nicola, N. A., & Norton, R S. (2009). The SOCS box encodes a hierarchy of affinities for Cullin5: Implications for ubiquitin ligase formation and cytokine signalling suppression. Journal of Molecular Biology, 387, 162-174. ; Guo, Y., Dong, L., Qiu, X., Wang, Y., Zhang, B., Liu, H., Yu, Y., Zang, Y., Yang, M., & Huang, Z. (2014). Structural basis for hijacking CBF-beta and CUL5 E3 ligase complex by HIV-1 Vif. Nature, 505, 229-233. ; Muniz, J. R., Guo, K., Kershaw, N. J., Ayinampudi, V., von Delft, F., Babon, J. J., & Bullock, A. N. (2013). Molecular architecture of the ankyrin SOCS box family of Cul5-dependent E3 ubiquitin ligases. Journal of Molecular Biology, 425, 3166-3177. ; Stanley, B. J., Ehrlich, E. S., Short, L., Yu, Y., Xiao, Z., Yu, X. F., & Xiong, Y. (2008). Structural insight into the human immunodeficiency virus Vif SOCS box and its role in human E3 ubiquitin ligase assembly. Journal of Virology, 82, 8656-8663. ; Thomas, J. C., Matak-Vinkovic, D., Van Molle, I., & Ciulli, A. (2013). Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: Insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Biochemistry, 52, 5236-5246. ; Woo, J. S., Imm, J. H., Min, C. K., Kim, K. J., Cha, S. S., & Oh, B. H. (2006). Structural and functional insights into the B30.2/SPRY domain. Embo Journal, 25, 1353-1363. ; Pae, J., Cinalli, R. M., Marzio, A., Pagano, M., & Lehmann, R. (2017). GCL and CUL3 control the switch between cell lineages by mediating localized degradation of an RTK. Developmental Cell, 42, 130-142. ; Genschik, P., Sumara, I., & Lechner, E. (2013). The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): Cellular functions and disease implications. Embo Journal, 32, 2307-2320. ; Wilkins, A., Ping, Q., & Carpenter, C. L. (2004). RhoBTB2 is a substrate of the mammalian Cul3 ubiquitin ligase complex. Genes & Development, 18, 856-861. ; Geyer, R., Wee, S., Anderson, S., Yates, J., & Wolf, D. A. (2003). BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Molecular Cell, 12, 783-790. ; Ye, B. H., Lista, F., Lo Coco, F., Knowles, D. M., Offit, K., Chaganti, R. S., & Dalla-Favera, R. (1993). Alterations of a zinc finger-encoding gene, BCL-6, in diffuse large-cell lymphoma. Science, 262, 747-750. ; Kerckaert, J. P., Deweindt, C., Tilly, H., Quief, S., Lecocq, G., & Bastard, C. (1993). LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nature Genetics, 5, 66-70. ; Migliazza, A., Martinotti, S., Chen, W., Fusco, C., Ye, B. H., Knowles, D. M., Offit, K., Chaganti, R. S., & Dalla-Favera, R. (1995). Frequent somatic hypermutation of the 5' noncoding region of the BCL6 gene in B-cell lymphoma. PNAS, 92, 12520-12524. ; Cardenas, M. G., Oswald, E., Yu, W., Xue, F., MacKerell, A. D., Jr., & Melnick, A. M. (2017). The expanding role of the BCL6 oncoprotein as a cancer therapeutic target. Clinical Cancer Research, 23, 885-893. ; Ai, Y., Hwang, L., MacKerell, A. D., Jr., Melnick, A., & Xue, F. (2021). Progress toward B-cell lymphoma 6 BTB domain inhibitors for the treatment of diffuse large B-cell lymphoma and beyond. Journal of Medicinal Chemistry, 64, 4333-4358. ; McCoull, W., Abrams, R. D., Anderson, E., Blades, K., Barton, P., Box, M., Burgess, J., Byth, K., Cao, Q., Chuaqui, C., Carbajo, R. J., Cheung, T., Code, E., Ferguson, A. D., Fillery, S., Fuller, N. O., Gangl, E., Gao, N., Grist, M., … Zhu, X. (2017). Discovery of pyrazolo[1,5-a]pyrimidine B-cell lymphoma 6 (BCL6) binders and optimization to high affinity macrocyclic inhibitors. Journal of Medicinal Chemistry, 60, 4386-4402. ; McCoull, W., Cheung, T., Anderson, E., Barton, P., Burgess, J., Byth, K., Cao, Q., Castaldi, M. P., Chen, H., Chiarparin, E., Carbajo, R. J., Code, E., Cowan, S., Davey, P. R., Ferguson, A. D., Fillery, S., Fuller, N. O., Gao, N., Hargreaves, D., … Wilson, D. M. (2018). Development of a novel B-cell lymphoma 6 (BCL6) PROTAC to provide insight into small molecule targeting of BCL6. Acs Chemical Biology, 13, 3131-3141. ; Evans, S. E., Goult, B. T., Fairall, L., Jamieson, A. G., Ko Ferrigno, P., Ford, R., Schwabe, J. W., & Wagner, S. D. (2014). The ansamycin antibiotic, rifamycin SV, inhibits BCL6 transcriptional repression and forms a complex with the BCL6-BTB/POZ domain. PLoS ONE, 9, e90889. ; Sakamoto, K., Sogabe, S., Kamada, Y., Sakai, N., Asano, K., Yoshimatsu, M., Ida, K., Imaeda, Y., & Sakamoto, J. I. (2017). Discovery of high-affinity BCL6-binding peptide and its structure-activity relationship. Biochemical and Biophysical Research Communications, 482, 310-316. ; Slabicki, M., Yoon, H., Koeppel, J., Nitsch, L., Roy Burman, S. S., Di Genua, C., Donovan, K. A., Sperling, A. S., Hunkeler, M., Tsai, J. M., Sharma, R., Guirguis, A., Zou, C., Chudasama, P., Gasser, J. A., Miller, P. G., Scholl, C., Frohling, S., Nowak, R. P., & Fischer, E. S. (2020). Small-molecule-induced polymerization triggers degradation of BCL6. Nature, 588, 164-168. ; Bellenie, B. R., Cheung, K. J., Varela, A., Pierrat, O. A., Collie, G. W., Box, G. M., Bright, M. D., Gowan, S., Hayes, A., Rodrigues, M. J., Shetty, K. N., Carter, M., Davis, O. A., Henley, A. T., Innocenti, P., Johnson, L. D., Liu, M., de Klerk, S., Le Bihan, Y. V., … Hoelder, S. (2020). Achieving in vivo target depletion through the discovery and optimization of benzimidazolone BCL6 degraders. Journal of Medicinal Chemistry, 63, 4047-4068. ; Cerchietti, L. C., Ghetu, A. F., Zhu, X., Da Silva, G. F., Zhong, S., Matthews, M., Bunting, K. L., Polo, J. M., Fares, C., Arrowsmith, C. H., Yang, S. N., Garcia, M., Coop, A., Mackerell, A. D., Jr., Prive, G. G., & Melnick, A. (2010). A small-molecule inhibitor of BCL6 kills DLBCL cells in vitro and in vivo. Cancer Cell, 17, 400-411. ; Chattopadhyay, A., Tate, S. A., Beswick, R. W., Wagner, S. D., & Ko Ferrigno, P. (2006). A peptide aptamer to antagonize BCL-6 function. Oncogene, 25, 2223-2233. ; Sereikaite, V., Fritzius, T., Kasaragod, V. B., Bader, N., Maric, H. M., Schindelin, H., Bettler, B., & Stromgaard, K. (2019). Targeting the gamma-aminobutyric acid type B (GABAB) receptor complex: Development of inhibitors targeting the K(+) channel tetramerization domain (KCTD) containing proteins/GABAB receptor protein-protein interaction. Journal of Medicinal Chemistry, 62, 8819-8830. ; de Paola, I., Pirone, L., Palmieri, M., Balasco, N., Esposito, L., Russo, L., Mazza, D., Di Marcotullio, L., Di Gaetano, S., Malgieri, G., Vitagliano, L., Pedone, E., & Zaccaro, L. (2015). Cullin3-BTB interface: A novel target for stapled peptides. PLoS ONE, 10, e0121149. ; Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605-1612.
  • Contributed Indexing: Keywords: BTB domain; BTB-kelch; Cullin; NPH3; TTK group; dimerization; protein multimerization
  • Entry Date(s): Date Created: 20221130 Date Completed: 20230119 Latest Revision: 20230224
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -