Zum Hauptinhalt springen

In silico study reveals unconventional interactions between MDC1 of DDR and Beclin-1 of autophagy.

Pandya, K ; Singh, N
In: Molecular diversity, Jg. 27 (2023-12-01), Heft 6, S. 2789-2802
Online academicJournal

Titel:
In silico study reveals unconventional interactions between MDC1 of DDR and Beclin-1 of autophagy.
Autor/in / Beteiligte Person: Pandya, K ; Singh, N
Link:
Zeitschrift: Molecular diversity, Jg. 27 (2023-12-01), Heft 6, S. 2789-2802
Veröffentlichung: Leiden, The Netherlands : ESCOM Science Publishers, c1995-, 2023
Medientyp: academicJournal
ISSN: 1573-501X (electronic)
DOI: 10.1007/s11030-022-10579-2
Schlagwort:
  • Beclin-1 metabolism
  • Trans-Activators chemistry
  • Trans-Activators genetics
  • Trans-Activators metabolism
  • Adaptor Proteins, Signal Transducing metabolism
  • Molecular Docking Simulation
  • Autophagy
  • Nuclear Proteins chemistry
  • Nuclear Proteins genetics
  • Nuclear Proteins metabolism
  • Cell Cycle Proteins
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Mol Divers] 2023 Dec; Vol. 27 (6), pp. 2789-2802. <i>Date of Electronic Publication: </i>2022 Dec 08.
  • MeSH Terms: Nuclear Proteins* / chemistry ; Nuclear Proteins* / genetics ; Nuclear Proteins* / metabolism ; Cell Cycle Proteins* ; Beclin-1 / metabolism ; Trans-Activators / chemistry ; Trans-Activators / genetics ; Trans-Activators / metabolism ; Adaptor Proteins, Signal Transducing / metabolism ; Molecular Docking Simulation ; Autophagy
  • References: Ruff SE, Logan SK, Garabedian MJ, Huang TT (2020) Roles for MDC1 in cancer development and treatment. DNA Repair (Amst). https://doi.org/10.1016/j.dnarep.2020.102948. (PMID: 10.1016/j.dnarep.2020.10294832866776) ; Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J (2015) Autophagy in DNA damage response. Int J Mol Sci 16(2):2641–2662. https://doi.org/10.3390/ijms16022641. (PMID: 10.3390/ijms16022641256255174346856) ; Petrini JHJ, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13(9):458–462. https://doi.org/10.1016/S0962-8924(03)00170-3. (PMID: 10.1016/S0962-8924(03)00170-312946624) ; Rassool FV (2003) DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 193:1–9. (PMID: 10.1016/S0304-3835(02)00692-412691817) ; So S, Davis AJ, Chen DJ (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 187(7):977–990. https://doi.org/10.1083/jcb.200906064. (PMID: 10.1083/jcb.200906064200266542806275) ; Jungmichel S, Stucki M (2010) MDC1: the art of keeping things in focus. Chromosoma 119(4):337–349. https://doi.org/10.1007/s00412-010-0266-9. (PMID: 10.1007/s00412-010-0266-920224865) ; Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467. https://doi.org/10.1074/jbc.C100466200. (PMID: 10.1074/jbc.C10046620011571274) ; Jungmichel S, Clapperton JA, Lloyd J et al (2012) The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator. Nucleic Acids Res 40(9):3913–3928. https://doi.org/10.1093/nar/gkr1300. (PMID: 10.1093/nar/gkr1300222348783351161) ; Coster G, Goldberg M (2010) The cellular response to dna damage: a focus on MDC1 and its interacting proteins. Nucleus. https://doi.org/10.4161/nucl.11176. (PMID: 10.4161/nucl.1117621326949) ; Lou Z, Minter-Dykhouse K, Franco S et al (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21(2):187–200. https://doi.org/10.1016/j.molcel.2005.11.025. (PMID: 10.1016/j.molcel.2005.11.02516427009) ; Lou Z, Minter-Dykhouse K, Wu X, Chen J (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421(6926):957–961. https://doi.org/10.1038/nature01447. (PMID: 10.1038/nature0144712607004) ; Zhang J, Ma Z, Treszezamsky A, Powell SN (2005) MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol 12(10):902–909. https://doi.org/10.1038/nsmb991. (PMID: 10.1038/nsmb99116186822) ; Panier S, Durocher D (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8(4):436–443. https://doi.org/10.1016/j.dnarep.2009.01.013. (PMID: 10.1016/j.dnarep.2009.01.01319230794) ; Nowsheen S, Lou Z (2018) Calling RNF168 to action. Cell Stress 2(5):113–114. https://doi.org/10.15698/cst2018.05.135. (PMID: 10.15698/cst2018.05.135312254756551701) ; Goldberg M, Stucki M, Falck J et al (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421(6926):952–956. https://doi.org/10.1038/nature01445. (PMID: 10.1038/nature0144512607003) ; Luo K, Yuan J, Chen J, Lou Z (2009) Topoisomerase IIα controls the decatenation checkpoint. Nat Cell Biol 11(2):204–210. https://doi.org/10.1038/ncb1828. (PMID: 10.1038/ncb182819098900) ; Leimbacher PA, Jones SE, Shorrocks AMK et al (2019) MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis. Mol Cell 74(3):571-583.e8. https://doi.org/10.1016/j.molcel.2019.02.014. (PMID: 10.1016/j.molcel.2019.02.014308984386509287) ; Nakanishi M, Ozaki T, Yamamoto H et al (2007) NFBD1/MDC1 associates with p53 and regulates its function at the crossroad between cell survival and death in response to DNA damage. J Biol Chem 282(31):22993–23004. https://doi.org/10.1074/jbc.M611412200. (PMID: 10.1074/jbc.M61141220017535811) ; Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90(2):313–323. https://doi.org/10.1016/j.biochi.2007.08.014. (PMID: 10.1016/j.biochi.2007.08.01417928127) ; Alexander A, Cai SL, Kim J et al (2012) Erratum: ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS (Proceedings of the National Academy of Sciences (2010) 107 (4153-4158) https://doi.org/10.1073/pnas.0913860107 ). Proc Natl Acad Sci USA 109(21):8352. https://doi.org/10.1073/pnas.1206201109. ; Liu EY, Xu N, O’Prey J et al (2015) Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc Natl Acad Sci USA 112(3):773–778. https://doi.org/10.1073/pnas.1409563112. (PMID: 10.1073/pnas.1409563112255680884311830) ; Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082. https://doi.org/10.1073/pnas.2436255100. (PMID: 10.1073/pnas.243625510014657337299911) ; Qu X, Yu J, Bhagat G et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820. https://doi.org/10.1172/JCI20039. (PMID: 10.1172/JCI2003914638851297002) ; Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D (2020) The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol 10(October):1–19. https://doi.org/10.3389/fonc.2020.578418. (PMID: 10.3389/fonc.2020.578418) ; Xu F, Fang Y, Yan L et al (2017) Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy. Sci Rep. https://doi.org/10.1038/srep45385. (PMID: 10.1038/srep45385292737635741764) ; Guo Q, Wang S, Zhang S et al (2020) ATM - CHK 2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J 39(10):1–17. https://doi.org/10.15252/embj.2019103111. (PMID: 10.15252/embj.2019103111) ; Chang YC, Peng YX, Yu BH et al (2021) VCP maintains nuclear size by regulating the DNA damage-associated MDC1–p53–autophagy axis in Drosophila. Nat Commun 12(1):1–17. https://doi.org/10.1038/s41467-021-24556-0. (PMID: 10.1038/s41467-021-24556-0) ; Rose PW, Beran B, Bi C et al (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39(SUPPL. 1):392–401. https://doi.org/10.1093/nar/gkq1021. (PMID: 10.1093/nar/gkq1021) ; Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084. (PMID: 10.1002/jcc.2008415264254) ; Kozakov D, Hall DR, Xia B et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278. https://doi.org/10.1038/nprot.2016.169. (PMID: 10.1038/nprot.2016.169280798795540229) ; Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134. https://doi.org/10.1002/pro.3289. (PMID: 10.1002/pro.328928875543) ; Unit M, Street G (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. https://doi.org/10.1107/S0021889892009944. (PMID: 10.1107/S0021889892009944) ; Najibi SM, Maadooliat M, Zhou L, Huang JZ, Gao X (2017) Protein structure classification and loop modeling using multiple ramachandran distributions. Comput Struct Biotechnol J 15:243–254. https://doi.org/10.1016/j.csbj.2017.01.011. (PMID: 10.1016/j.csbj.2017.01.011282805265331158) ; Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32(23):3676–3678. https://doi.org/10.1093/bioinformatics/btw514. (PMID: 10.1093/bioinformatics/btw51427503228) ; Vangone A, Bonvin A (2017) PRODIGY: a contact-based predictor of binding affinity in protein-protein complexes. Bio-Protoc. https://doi.org/10.21769/BIOPROTOC.2124. (PMID: 10.21769/BIOPROTOC.2124344584478376549) ; Massova I, Kollman PA (1999) Computational alanine scanning to probe protein−protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 3:1–11. ; Krüger DM, Gohlke H (2010) DrugScorePPI webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Res 38(SUPPL. 2):480–486. https://doi.org/10.1093/nar/gkq471. (PMID: 10.1093/nar/gkq471) ; Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291. (PMID: 10.1002/jcc.2029116211538) ; Lindahl E, Bjelkmar P, Larsson P, Cuendet MA, Hess B (2010) Implementation of the charmm force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6(2):459–466. https://doi.org/10.1021/ct900549r. (PMID: 10.1021/ct900549r26617301) ; Peng X, Wang J, Peng W, Wu FX, Pan Y (2017) Protein-protein interactions: detection, reliability assessment and applications. Brief Bioinform 18(5):798–819. https://doi.org/10.1093/bib/bbw066. (PMID: 10.1093/bib/bbw06627444371) ; Chen F, Sun H, Wang J et al (2018) Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes. RNA 24(9):1183–1194. https://doi.org/10.1261/rna.065896.118. (PMID: 10.1261/rna.065896.118299300246097651) ; Weng G, Wang E, Wang Z et al (2019) HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 47(W1):W322–W330. https://doi.org/10.1093/nar/gkz397. (PMID: 10.1093/nar/gkz397311063576602443) ; Stitou M, Toufik H, Bouachrine M, Lamchouri F (2021) Quantitative structure–activity relationships analysis, homology modeling, docking and molecular dynamics studies of triterpenoid saponins as Kirsten rat sarcoma inhibitors. J Biomol Struct Dyn 39(1):152–170. https://doi.org/10.1080/07391102.2019.1707122. (PMID: 10.1080/07391102.2019.170712231870215) ; Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9):1–17. https://doi.org/10.1101/cshperspect.a012716. (PMID: 10.1101/cshperspect.a012716) ; Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123(7):1213–1226. https://doi.org/10.1016/j.cell.2005.09.038. (PMID: 10.1016/j.cell.2005.09.03816377563) ; Qiu XLZ, Zuo ZWW, Liu ZGC (2017) NFBD1 / MDC1 participates in the regulation of proliferation and apoptosis in human laryngeal squamous cell carcinoma. Clin Transl Oncol. https://doi.org/10.1007/s12094-017-1748-5. (PMID: 10.1007/s12094-017-1748-528921460) ; Singh N, Bhakuni R, Chhabria D, Kirubakaran S (2020) MDC1 depletion promotes cisplatin induced cell death in cervical cancer cells. BMC Res Notes 13(1):1–9. https://doi.org/10.1186/s13104-020-04996-5. (PMID: 10.1186/s13104-020-04996-5) ; Ruff SE, Logan SK, Garabedian MJ, Huang TT (2020) Roles for MDC1 in cancer development and treatment. DNA Repair (Amst) 95(August):102948. https://doi.org/10.1016/j.dnarep.2020.102948. (PMID: 10.1016/j.dnarep.2020.10294832866776) ; Dziadkowiec KN, Gasiorowska E, Nowak-Markwitz E, Jankowska A (2016) PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz Menopauzalny 15(4):215–219. https://doi.org/10.5114/pm.2016.65667. (PMID: 10.5114/pm.2016.6566728250726) ; Shin DW (2020) Dual roles of autophagy and their potential drugs for improving cancer therapeutics. Biomol Ther 28(6):503–511. https://doi.org/10.4062/biomolther.2020.155. (PMID: 10.4062/biomolther.2020.155) ; Lin JF, Lin YC, Tsai TF, Chen HE, Chou KY, Hwang TIS (2017) Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des Devel Ther 11:1517–1533. https://doi.org/10.2147/DDDT.S126464. (PMID: 10.2147/DDDT.S126464285530835439993) ; Mathew R, Karp CM, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075. https://doi.org/10.1016/j.cell.2009.03.048. (PMID: 10.1016/j.cell.2009.03.048195245092802318) ; Cicchini M, Chakrabarti R, Kongara S et al (2014) Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy 10(11):2036–2052. https://doi.org/10.4161/auto.34398. (PMID: 10.4161/auto.34398254839664502817) ; Patel AN, Goyal S, Wu H, Schiff D, Moran MS, Haffty BG (2011) Mediator of DNA damage checkpoint protein 1 ( MDC1) expression as a prognostic marker for nodal recurrence in early-stage breast cancer patients treated with breast-conserving surgery and radiation therapy. Breast Cancer Res Treat 1:601–607. https://doi.org/10.1007/s10549-010-0960-6. (PMID: 10.1007/s10549-010-0960-6) ; Caracciolo D, Riillo C, Teresa M, Martino D, Tagliaferri P (2021) Repair as cancer’s Achilles ’ heel.
  • Contributed Indexing: Keywords: And tumor; Autophagy; Beclin-1; DNA damage response; Mediator of DNA damage checkpoint 1
  • Substance Nomenclature: 0 (Nuclear Proteins) ; 0 (Beclin-1) ; 0 (Cell Cycle Proteins) ; 0 (Trans-Activators) ; 0 (Adaptor Proteins, Signal Transducing)
  • Entry Date(s): Date Created: 20221209 Date Completed: 20231113 Latest Revision: 20231113
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -