Zum Hauptinhalt springen

DNA Methylation Description of Hippocampus, Cortex, Amygdala, and Blood of Drug-Resistant Temporal Lobe Epilepsy.

Sánchez-Jiménez, P ; Elizalde-Horcada, M ; et al.
In: Molecular neurobiology, Jg. 60 (2023-04-01), Heft 4, S. 2070-2085
Online academicJournal

Titel:
DNA Methylation Description of Hippocampus, Cortex, Amygdala, and Blood of Drug-Resistant Temporal Lobe Epilepsy.
Autor/in / Beteiligte Person: Sánchez-Jiménez, P ; Elizalde-Horcada, M ; Sanz-García, A ; Granero-Cremades, I ; De Toledo, M ; Pulido, P ; Navas, M ; Gago-Veiga, AB ; Alonso-Guirado, L ; Alonso-Cerezo, MC ; Nava-Cedeño, D ; Abad-Santos, F ; Torres-Díaz, CV ; Ovejero-Benito, MC
Link:
Zeitschrift: Molecular neurobiology, Jg. 60 (2023-04-01), Heft 4, S. 2070-2085
Veröffentlichung: Clifton, NJ : Humana Press, c1987-, 2023
Medientyp: academicJournal
ISSN: 1559-1182 (electronic)
DOI: 10.1007/s12035-022-03180-z
Schlagwort:
  • Humans
  • DNA Methylation
  • Temporal Lobe
  • Hippocampus
  • Amygdala
  • Epilepsy, Temporal Lobe genetics
  • Drug Resistant Epilepsy genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Mol Neurobiol] 2023 Apr; Vol. 60 (4), pp. 2070-2085. <i>Date of Electronic Publication: </i>2023 Jan 05.
  • MeSH Terms: Epilepsy, Temporal Lobe* / genetics ; Drug Resistant Epilepsy* / genetics ; Humans ; DNA Methylation ; Temporal Lobe ; Hippocampus ; Amygdala
  • References: Amin U, Benbadis SR (2020) Avoiding complacency when treating uncontrolled seizures: why and how? Expert Rev Neurother 1–9. https://doi.org/10.1080/14737175.2020.1713100. ; Löscher W, Potschka H, Sisodiya SM, Vezzani A (2020) Drug Resistance in epilepsy: clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol Rev 72:606–638. https://doi.org/10.1124/pr.120.019539. (PMID: 10.1124/pr.120.019539325409597300324) ; Fang M, Xi Z-Q, Wu Y, Wang X-F (2011) A new hypothesis of drug refractory epilepsy: neural network hypothesis. Med Hypotheses 76:871–876. https://doi.org/10.1016/j.mehy.2011.02.039. (PMID: 10.1016/j.mehy.2011.02.03921429675) ; Torres CV, Pastor J, Garcia-Navarrete E et al (2015) Classification of structural lesions in magnetic resonance imaging. Surgical implications in drug-resistant epilepsy patients. Rev Neurol 61:241–248. (PMID: 26350774) ; Janmohamed M, Brodie MJ, Kwan P (2019) Pharmacoresistance - Epidemiology, mechanisms, and impact on epilepsy treatment. Neuropharmacology 107790. https://doi.org/10.1016/j.neuropharm.2019.107790. ; Kobow K, Reid CA, van Vliet EA et al (2020) Epigenetics explained: a topic “primer” for the epilepsy community by the ILAE Genetics/Epigenetics Task Force. Epileptic Disord Int Epilepsy J Videotape 22:127–141. https://doi.org/10.1684/epd.2020.1143. (PMID: 10.1684/epd.2020.1143) ; Conboy K, Henshall DC, Brennan GP (2021) Epigenetic principles underlying epileptogenesis and epilepsy syndromes. Neurobiol Dis 148:105179. https://doi.org/10.1016/j.nbd.2020.105179. (PMID: 10.1016/j.nbd.2020.10517933181318) ; Belhedi N, Perroud N, Karege F et al (2014) Increased CPA6 promoter methylation in focal epilepsy and in febrile seizures. Epilepsy Res 108:144–148. https://doi.org/10.1016/j.eplepsyres.2013.10.007. (PMID: 10.1016/j.eplepsyres.2013.10.00724290490) ; Kobow K, Ziemann M, Kaipananickal H et al (2019) Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia. Epilepsia 60:1091–1103. https://doi.org/10.1111/epi.14934. (PMID: 10.1111/epi.14934310748426635741) ; Kobow K, Jeske I, Hildebrandt M et al (2009) Increased reelin promoter methylation is associated with granule cell dispersion in human temporal lobe epilepsy. J Neuropathol Exp Neurol 68:356–364. https://doi.org/10.1097/NEN.0b013e31819ba737. (PMID: 10.1097/NEN.0b013e31819ba73719287316) ; Long H-Y, Feng L, Kang J et al (2017) Blood DNA methylation pattern is altered in mesial temporal lobe epilepsy. Sci Rep 7:43810. https://doi.org/10.1038/srep43810. (PMID: 10.1038/srep43810282764485343463) ; Lv Y, Zheng X, Shi M et al (2019) Different EPHX1 methylation levels in promoter area between carbamazepine-resistant epilepsy group and carbamazepine-sensitive epilepsy group in Chinese population. BMC Neurol 19:114. https://doi.org/10.1186/s12883-019-1308-4. (PMID: 10.1186/s12883-019-1308-4311641006549255) ; Martins-Ferreira R, Leal B, Chaves J et al (2022) Epilepsy progression is associated with cumulative DNA methylation changes in inflammatory genes. Prog Neurobiol 209:102207. https://doi.org/10.1016/j.pneurobio.2021.102207. (PMID: 10.1016/j.pneurobio.2021.10220734923048) ; Miller-Delaney SFC, Bryan K, Das S et al (2015) Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain 138:616–631. https://doi.org/10.1093/brain/awu373. (PMID: 10.1093/brain/awu37325552301) ; Suchkova IO, Borisova EV, Patkin EL (2020) Length polymorphism and methylation status of UPS29 Minisatellite of the ACAP3 gene as molecular biomarker of epilepsy. Sex Differences in Seizure Types and Symptoms. Int J Mol Sci 21. https://doi.org/10.3390/ijms21239206. ; Xiao W, Liu C, Zhong K et al (2020) CpG methylation signature defines human temporal lobe epilepsy and predicts drug-resistant. CNS Neurosci Ther. https://doi.org/10.1111/cns.13394. (PMID: 10.1111/cns.13394331120327816210) ; Xiao W, Cao Y, Long H et al (2018) Genome-wide DNA methylation patterns analysis of noncoding RNAs in temporal lobe epilepsy patients. Mol Neurobiol 55:793–803. https://doi.org/10.1007/s12035-016-0353-x. (PMID: 10.1007/s12035-016-0353-x28058582) ; Zhu Q, Wang L, Zhang Y et al (2012) Increased expression of DNA methyltransferase 1 and 3a in human temporal lobe epilepsy. J Mol Neurosci MN 46:420–426. https://doi.org/10.1007/s12031-011-9602-7. (PMID: 10.1007/s12031-011-9602-721826395) ; Mohandas N, Loke YJ, Hopkins S et al (2019) Evidence for type-specific DNA methylation patterns in epilepsy: a discordant monozygotic twin approach. Epigenomics 11:951–968. https://doi.org/10.2217/epi-2018-0136. (PMID: 10.2217/epi-2018-013631166810) ; Zhang W, Wang H, Liu B et al (2021) Differential DNA methylation profiles in patients with temporal lobe epilepsy and hippocampal sclerosis ILAE Type I. J Mol Neurosci MN 71:1951–1966. https://doi.org/10.1007/s12031-020-01780-9. (PMID: 10.1007/s12031-020-01780-933403589) ; Wang L, Fu X, Peng X et al (2016) DNA methylation profiling reveals correlation of differential methylation patterns with gene expression in human epilepsy. J Mol Neurosci MN 59:68–77. https://doi.org/10.1007/s12031-016-0735-6. (PMID: 10.1007/s12031-016-0735-627067309) ; Liu X, Ou S, Xu T et al (2016) New differentially expressed genes and differential DNA methylation underlying refractory epilepsy. Oncotarget. https://doi.org/10.18632/oncotarget.13642. ; Younus I, Reddy DS (2017) Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy. Pharmacol Ther 177:108–122. https://doi.org/10.1016/j.pharmthera.2017.03.002. (PMID: 10.1016/j.pharmthera.2017.03.002282797855565684) ; Engel JJ, Van Ness, Rasmussen (1993) Outcome withrespect to epileptic seizures. In: Surgigal treatmentof the epilepsies. pp 609–21. ; Bibikova M, Le J, Barnes B et al (2009) Genome-wide DNA methylation profiling using Infinium ® assay. Epigenomics 1:177–200. https://doi.org/10.2217/epi.09.14. (PMID: 10.2217/epi.09.1422122642) ; Maksimovic J, Phipson B, Oshlack A (2016) A cross-package bioconductor workflow for analysing methylation array data. F1000Research 5:1281. https://doi.org/10.12688/f1000research.8839.3. ; Triche TJ, Weisenberger DJ, Van Den Berg D et al (2013) Low-level processing of illumina infinium DNA methylation BeadArrays. Nucleic Acids Res 41:e90. https://doi.org/10.1093/nar/gkt090. (PMID: 10.1093/nar/gkt090234760283627582) ; Teschendorff AE, Marabita F, Lechner M et al (2013) A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinforma Oxf Engl 29:189–196. https://doi.org/10.1093/bioinformatics/bts680. (PMID: 10.1093/bioinformatics/bts680) ; Tian Y, Morris TJ, Webster AP et al (2017) ChAMP: updated methylation analysis pipeline for Illumina BeadChips. Bioinforma Oxf Engl 33:3982–3984. https://doi.org/10.1093/bioinformatics/btx513. (PMID: 10.1093/bioinformatics/btx513) ; Chen Y, Lemire M, Choufani S et al (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8:203–209. https://doi.org/10.4161/epi.23470. (PMID: 10.4161/epi.23470233146983592906) ; Pidsley R, Zotenko E, Peters TJ et al (2016) Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome Biol 17:208. https://doi.org/10.1186/s13059-016-1066-1. (PMID: 10.1186/s13059-016-1066-1277173815055731) ; Ritchie ME, Phipson B, Wu D et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47–e47. https://doi.org/10.1093/nar/gkv007. (PMID: 10.1093/nar/gkv007256057924402510) ; Kuleshov MV, Jones MR, Rouillard AD et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44:W90-97. https://doi.org/10.1093/nar/gkw377. (PMID: 10.1093/nar/gkw377271419614987924) ; Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv 005165. https://doi.org/10.1101/005165. ; Edgar RD, Jones MJ, Meaney MJ et al (2017) BECon: a tool for interpreting DNA methylation findings from blood in the context of brain. Transl Psychiatry 7:e1187. https://doi.org/10.1038/tp.2017.171. (PMID: 10.1038/tp.2017.171287630575611738) ; Braun PR, Han S, Hing B et al (2019) Genome-wide DNA methylation comparison between live human brain and peripheral tissues within individuals. Transl Psychiatry 9:47. https://doi.org/10.1038/s41398-019-0376-y. (PMID: 10.1038/s41398-019-0376-y307052576355837) ; Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biol 14:R115. https://doi.org/10.1186/gb-2013-14-10-r115. (PMID: 10.1186/gb-2013-14-10-r115241389284015143) ; Morandi L, Franceschi E, de Biase D et al (2010) Promoter methylation analysis of O6-methylguanine-DNA methyltransferase in glioblastoma: detection by locked nucleic acid based quantitative PCR using an imprinted gene (SNURF) as a reference. BMC Cancer 10:48. https://doi.org/10.1186/1471-2407-10-48. (PMID: 10.1186/1471-2407-10-48201670862843669) ; Tripathi PP, Bozzi Y (2015) The role of dopaminergic and serotonergic systems in neurodevelopmental disorders: a focus on epilepsy and seizure susceptibility. BioImpacts BI 5:97–102. https://doi.org/10.15171/bi.2015.07. ; Kinirons P, Verlaan DJ, Dubé M-P et al (2008) A novel locus for idiopathic generalized epilepsy in French-Canadian families maps to 10p11. Am J Med Genet A 146A:578–584. https://doi.org/10.1002/ajmg.a.32139. (PMID: 10.1002/ajmg.a.3213918241056) ; Wang J, Lin Z-J, Liu L et al (2017) Epilepsy-associated genes. Seizure 44:11–20. https://doi.org/10.1016/j.seizure.2016.11.030. (PMID: 10.1016/j.seizure.2016.11.03028007376) ; Friedman LK, Mancuso J, Patel A et al (2013) Transcriptome profiling of hippocampal CA1 after early-life seizure-induced preconditioning may elucidate new genetic therapies for epilepsy. Eur J Neurosci 38:2139–2152. https://doi.org/10.1111/ejn.12168. (PMID: 10.1111/ejn.12168235517184354696) ; Han Y, Yang L, Liu X et al (2020) HMGB1/CXCL12-Mediated Immunity and Th17 Cells Might Underlie Highly Suspected Autoimmune Epilepsy in Elderly Individuals. Neuropsychiatr Dis Treat 16:1285–1293. https://doi.org/10.2147/NDT.S242766. (PMID: 10.2147/NDT.S242766325470327245462) ; Zhang Y, Gao B, Xiong Y et al (2017) Expression of SHANK3 in the Temporal Neocortex of Patients with Intractable Temporal Epilepsy and Epilepsy Rat Models. Cell Mol Neurobiol 37:857–867. https://doi.org/10.1007/s10571-016-0423-7. (PMID: 10.1007/s10571-016-0423-727592227) ; Rakyan VK, Down TA, Thorne NP et al (2008) An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18:1518–1529. https://doi.org/10.1101/gr.077479.108. (PMID: 10.1101/gr.077479.108185777052527707) ; Kobow K, Kaspi A, Harikrishnan KN et al (2013) Deep sequencing reveals increased DNA methylation in chronic rat epilepsy. Acta Neuropathol (Berl) 126:741–756. https://doi.org/10.1007/s00401-013-1168-8. (PMID: 10.1007/s00401-013-1168-824005891) ; Friedman WJ (2010) Proneurotrophins, Seizures, and Neuronal Apoptosis. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 16:244–252. https://doi.org/10.1177/1073858409349903. (PMID: 10.1177/1073858409349903) ; Yang C, Shi Y, Li X et al (2022) Cadherins and the pathogenesis of epilepsy. Cell Biochem Funct 40:336–348. https://doi.org/10.1002/cbf.3699. (PMID: 10.1002/cbf.369935393670) ; Hodges SL, Lugo JN (2020) Therapeutic role of targeting mTOR signaling and neuroinflammation in epilepsy. Epilepsy Res 161:106282. https://doi.org/10.1016/j.eplepsyres.2020.106282. (PMID: 10.1016/j.eplepsyres.2020.106282320362559205332) ; Wang Z, Ren D, Zheng P (2022) The role of Rho/ROCK in epileptic seizure-related neuronal damage. Metab Brain Dis 37:881–887. https://doi.org/10.1007/s11011-022-00909-6. (PMID: 10.1007/s11011-022-00909-6351195889042975) ; Alvim MKM, Morita-Sherman ME, Yasuda CL et al (2021) Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 62:2385–2394. https://doi.org/10.1111/epi.17023. (PMID: 10.1111/epi.1702334331458) ; Sato R, Ohmori K, Umetsu M et al (2021) An Atlas of the Quantitative Protein Expression of Anti-Epileptic-Drug Transporters, Metabolizing Enzymes and Tight Junctions at the Blood-Brain Barrier in Epileptic Patients. Pharmaceutics 13:2122. https://doi.org/10.3390/pharmaceutics13122122. (PMID: 10.3390/pharmaceutics13122122349594038708024) ; Löscher W, Friedman A (2020) Structural, Molecular, and Functional Alterations of the Blood-Brain Barrier during Epileptogenesis and Epilepsy: A Cause, Consequence, or Both? Int J Mol Sci 21:E591. https://doi.org/10.3390/ijms21020591. (PMID: 10.3390/ijms21020591) ; Keck M, Androsova G, Gualtieri F et al (2017) A systems level analysis of epileptogenesis-associated proteome alterations. Neurobiol Dis 105:164–178. https://doi.org/10.1016/j.nbd.2017.05.017. (PMID: 10.1016/j.nbd.2017.05.01728576708) ; van Gassen KLI, de Wit M, Koerkamp MJAG et al (2008) Possible role of the innate immunity in temporal lobe epilepsy. Epilepsia 49:1055–1065. https://doi.org/10.1111/j.1528-1167.2007.01470.x. (PMID: 10.1111/j.1528-1167.2007.01470.x18076643) ; Chen C-M, Wang H-Y, You L-R et al (2010) Expression analysis of an evolutionarily conserved metallophosphodiesterase gene, Mpped1, in the normal and beta-catenin-deficient malformed dorsal telencephalon. Dev Dyn Off Publ Am Assoc Anat 239:1797–1806. https://doi.org/10.1002/dvdy.22293. (PMID: 10.1002/dvdy.22293) ; Olson H, Shen Y, Avallone J et al (2014) Copy number variation plays an important role in clinical epilepsy. Ann Neurol 75:943–958. https://doi.org/10.1002/ana.24178. (PMID: 10.1002/ana.24178248119174487364) ; Liu Y, Zhang Y (2019) ETV5 is Essential for Neuronal Differentiation of Human Neural Progenitor Cells by Repressing NEUROG2 Expression. Stem Cell Rev Rep 15:703–716. https://doi.org/10.1007/s12015-019-09904-4. (PMID: 10.1007/s12015-019-09904-431273540) ; Li X, Han Y, Li D et al (2021) Identification and Validation of a Dysregulated miRNA-Associated mRNA Network in Temporal Lobe Epilepsy. BioMed Res Int 2021:1–12. https://doi.org/10.1155/2021/4118216. (PMID: 10.1155/2021/4118216) ; Guintivano J, Aryee MJ, Kaminsky ZA (2013) A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression. Epigenetics 8:290–302. https://doi.org/10.4161/epi.23924. (PMID: 10.4161/epi.23924234262673669121) ; Farré P, Jones MJ, Meaney MJ et al (2015) Concordant and discordant DNA methylation signatures of aging in human blood and brain. Epigenetics Chromatin 8:19. https://doi.org/10.1186/s13072-015-0011-y. (PMID: 10.1186/s13072-015-0011-y259777074430927)
  • Grant Information: PI2017/02244 Instituto de Salud Carlos III; CAM.IND2017/BMD-7578 Comunidad de Madrid
  • Contributed Indexing: Keywords: DNA methylation array; Drug-resistant epilepsy; Epigenetic; Epigenome-wide association study (EWAS); Epilepsy biomarkers
  • Entry Date(s): Date Created: 20230105 Date Completed: 20230307 Latest Revision: 20230307
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -