Zum Hauptinhalt springen

LncRNA SNHG16 regulates RAS and NF-κB pathway-mediated NLRP3 inflammasome activation to aggravate diabetes nephropathy through stabilizing TLR4.

Liu, Y ; Zhang, M ; et al.
In: Acta diabetologica, Jg. 60 (2023-04-01), Heft 4, S. 563-577
Online academicJournal

Titel:
LncRNA SNHG16 regulates RAS and NF-κB pathway-mediated NLRP3 inflammasome activation to aggravate diabetes nephropathy through stabilizing TLR4.
Autor/in / Beteiligte Person: Liu, Y ; Zhang, M ; Zhong, H ; Xie, N ; Wang, Y ; Ding, S ; Su, X
Link:
Zeitschrift: Acta diabetologica, Jg. 60 (2023-04-01), Heft 4, S. 563-577
Veröffentlichung: Berlin : Springer Verlag ; <i>Original Publication</i>: Berlin : Springer International, c1991-, 2023
Medientyp: academicJournal
ISSN: 1432-5233 (electronic)
DOI: 10.1007/s00592-022-02021-8
Schlagwort:
  • Animals
  • Mice
  • Cytokines
  • Fibrosis
  • Inflammasomes metabolism
  • Inflammation metabolism
  • NF-kappa B metabolism
  • NLR Family, Pyrin Domain-Containing 3 Protein genetics
  • NLR Family, Pyrin Domain-Containing 3 Protein metabolism
  • Reactive Oxygen Species metabolism
  • RNA, Messenger
  • Superoxide Dismutase
  • Toll-Like Receptor 4 genetics
  • Humans
  • Diabetes Mellitus, Experimental genetics
  • Diabetes Mellitus, Experimental metabolism
  • Diabetic Nephropathies genetics
  • Diabetic Nephropathies metabolism
  • RNA, Long Noncoding genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Acta Diabetol] 2023 Apr; Vol. 60 (4), pp. 563-577. <i>Date of Electronic Publication: </i>2023 Jan 20.
  • MeSH Terms: Diabetes Mellitus, Experimental* / genetics ; Diabetes Mellitus, Experimental* / metabolism ; Diabetic Nephropathies* / genetics ; Diabetic Nephropathies* / metabolism ; RNA, Long Noncoding* / genetics ; Animals ; Mice ; Cytokines ; Fibrosis ; Inflammasomes / metabolism ; Inflammation / metabolism ; NF-kappa B / metabolism ; NLR Family, Pyrin Domain-Containing 3 Protein / genetics ; NLR Family, Pyrin Domain-Containing 3 Protein / metabolism ; Reactive Oxygen Species / metabolism ; RNA, Messenger ; Superoxide Dismutase ; Toll-Like Receptor 4 / genetics ; Humans
  • References: Batsford S, Duermueller U, Seemayer C, Mueller C, Hopfer H, Mihatsch M (2011) Protein level expression of Toll-like receptors 2, 4 and 9 in renal disease. Nephrol Dial Transplant 26(4):1413–1416. https://doi.org/10.1093/ndt/gfq752. (PMID: 10.1093/ndt/gfq75221220755) ; Cai F, Jiang H, Li Y, Li Q, Yang C (2021) Upregulation of long non-coding RNA SNHG16 promotes diabetes-related RMEC dysfunction via activating NF-κB and PI3K/AKT pathways. Mol Ther Nucleic Acids 24:512–527. https://doi.org/10.1016/j.omtn.2021.01.035. (PMID: 10.1016/j.omtn.2021.01.035338981048056184) ; D’Addio F, Vergani A, Potena L et al (2018) P2X7R mutation disrupts the NLRP3-mediated Th program and predicts poor cardiac allograft outcomes. J Clin Invest 128(8):3490–3503. https://doi.org/10.1172/jci94524. (PMID: 10.1172/jci94524300106236063506) ; Duan YR, Chen BP, Chen F et al (2021) LncRNA lnc-ISG20 promotes renal fibrosis in diabetic nephropathy by inducing AKT phosphorylation through miR-486-5p/NFAT5. J Cell Mol Med 25(11):4922–4937. https://doi.org/10.1111/jcmm.16280. (PMID: 10.1111/jcmm.16280339392478178263) ; Feng Q, Liu D, Lu Y, Liu Z (2020) The interplay of renin-angiotensin system and Toll-like receptor 4 in the inflammation of diabetic nephropathy. J Immunol Res 2020:6193407. https://doi.org/10.1155/2020/6193407. (PMID: 10.1155/2020/6193407324118007210546) ; Fu D, Ju Y, Zhu C, Pan Y, Zhang S (2022) LncRNA NEAT1 promotes TLR4 expression to regulate lipopolysaccharide-induced trophoblastic cell pyroptosis as a molecular sponge of miR-302b-3p. Mol Biotechnol. https://doi.org/10.1007/s12033-021-00436-2. (PMID: 10.1007/s12033-021-00436-236454533) ; Garibotto G, Carta A, Picciotto D, Viazzi F, Verzola D (2017) Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol 30(6):719–727. https://doi.org/10.1007/s40620-017-0432-8. (PMID: 10.1007/s40620-017-0432-828933050) ; Ge Y, Wang J, Wu D et al (2019) lncRNA NR_038323 suppresses renal fibrosis in diabetic nephropathy by targeting the miR-324-3p/DUSP1 axis. Mol Ther Nucleic Acids 17:741–753. https://doi.org/10.1016/j.omtn.2019.07.007. (PMID: 10.1016/j.omtn.2019.07.007314307176709345) ; Gurley SB, Coffman TM (2007) The renin-angiotensin system and diabetic nephropathy. Semin Nephrol 27(2):144–152. https://doi.org/10.1016/j.semnephrol.2007.01.009. (PMID: 10.1016/j.semnephrol.2007.01.00917418683) ; He X, Zeng X (2020) LncRNA SNHG16 aggravates high glucose-induced podocytes injury in diabetic nephropathy through targeting miR-106a and thereby up-regulating KLF9. Diabetes Metab Syndr Obes 13:3551–3560. https://doi.org/10.2147/dmso.S271290. (PMID: 10.2147/dmso.S271290331167067549883) ; Hou Y, Lin S, Qiu J et al (2020) NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun 521(3):791–798. https://doi.org/10.1016/j.bbrc.2019.10.194. (PMID: 10.1016/j.bbrc.2019.10.19431703838) ; Jiang X, Ru Q, Li P et al (2020) LncRNA SNHG16 induces proliferation and fibrogenesis via modulating miR-141-3p and CCND1 in diabetic nephropathy. Gene Ther 27(12):557–566. https://doi.org/10.1038/s41434-020-0160-x. (PMID: 10.1038/s41434-020-0160-x32504027) ; Lei X, Zhang L, Li Z, Ren J (2018) Astragaloside IV/lncRNA-TUG1/TRAF5 signaling pathway participates in podocyte apoptosis of diabetic nephropathy rats. Drug Des Dev Ther 12:2785–2793. https://doi.org/10.2147/dddt.S166525. (PMID: 10.2147/dddt.S166525) ; Leng B, Zhang Y, Liu X et al (2019) Astragaloside IV suppresses high glucose-induced NLRP3 inflammasome activation by inhibiting TLR4/NF-κB and CaSR. Mediat Inflamm 2019:1082497. https://doi.org/10.1155/2019/1082497. (PMID: 10.1155/2019/1082497) ; Lin M, Yiu WH, Wu HJ et al (2012) Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 23(1):86–102. https://doi.org/10.1681/asn.2010111210. (PMID: 10.1681/asn.201011121022021706) ; Liu X, Ma L, Li Z (2020) Effects of renin-angiotensin system blockers on renal and cardiovascular outcomes in patients with diabetic nephropathy: a meta-analysis of randomized controlled trials. J Endocrinol Invest 43(7):959–972. https://doi.org/10.1007/s40618-020-01179-8. (PMID: 10.1007/s40618-020-01179-831939197) ; Loretelli C, Rocchio F, D’Addio F et al (2021) The IL-8-CXCR1/2 axis contributes to diabetic kidney disease. Metabolism 121:154804. https://doi.org/10.1016/j.metabol.2021.154804. (PMID: 10.1016/j.metabol.2021.15480434097917) ; Melica ME, Antonelli G, Semeraro R et al (2022) Differentiation of crescent-forming kidney progenitor cells into podocytes attenuates severe glomerulonephritis in mice. Sci Transl Med 14(657):eabg3277. https://doi.org/10.1126/scitranslmed.abg3277. (PMID: 10.1126/scitranslmed.abg3277359476767614034) ; Meznad K, Paget-Bailly P, Jacquin E et al (2021) The exon junction complex core factor eIF4A3 is a key regulator of HPV16 gene expression. Biosci Rep. https://doi.org/10.1042/bsr20203488. ; Nair AR, Ebenezer PJ, Saini Y, Francis J (2015) Angiotensin II-induced hypertensive renal inflammation is mediated through HMGB1-TLR4 signaling in rat tubulo-epithelial cells. Exp Cell Res 335(2):238–247. https://doi.org/10.1016/j.yexcr.2015.05.011. (PMID: 10.1016/j.yexcr.2015.05.01126033363) ; Qin B, Cao X (2021) LncRNA PVT1 regulates high glucose-induced viability, oxidative stress, fibrosis, and inflammation in diabetic nephropathy via miR-325-3p/Snail1 axis. Diabetes Metab Syndr Obes 14:1741–1750. https://doi.org/10.2147/dmso.S303151. (PMID: 10.2147/dmso.S303151339074358064675) ; Samsu N (2021) Diabetic nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int 2021:1497449. https://doi.org/10.1155/2021/1497449. (PMID: 10.1155/2021/1497449343076508285185) ; Satirapoj B, Adler SG (2015) Prevalence and management of diabetic nephropathy in western countries. Kidney Dis (Basel) 1(1):61–70. https://doi.org/10.1159/000382028. (PMID: 10.1159/00038202827536666) ; Shaw S, Wang X, Redd H, Alexander GD, Isales CM, Marrero MB (2003) High glucose augments the angiotensin II-induced activation of JAK2 in vascular smooth muscle cells via the polyol pathway. J Biol Chem 278(33):30634–30641. https://doi.org/10.1074/jbc.M305008200. (PMID: 10.1074/jbc.M30500820012777386) ; Su Q, Li L, Sun Y, Yang H, Ye Z, Zhao J (2018) Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cell Physiol Biochem 47(4):1497–1508. https://doi.org/10.1159/000490866. (PMID: 10.1159/00049086629940584) ; Sugahara M, Pak WLW, Tanaka T, Tang SCW, Nangaku M (2021) Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology (Carlton) 26(6):491–500. https://doi.org/10.1111/nep.13860. (PMID: 10.1111/nep.1386033550672) ; Wada J, Makino H (2013) Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 124(3):139–152. https://doi.org/10.1042/cs20120198. (PMID: 10.1042/cs2012019823075333) ; Wu M, Yang Z, Zhang C et al (2021) Inhibition of NLRP3 inflammasome ameliorates podocyte damage by suppressing lipid accumulation in diabetic nephropathy. Metabolism 118:154748. https://doi.org/10.1016/j.metabol.2021.154748. (PMID: 10.1016/j.metabol.2021.15474833675822) ; Wu X, Fan D, Chen B (2022) LncRNA NEAT1 accelerates the proliferation, oxidative stress, inflammation, and fibrosis and suppresses the apoptosis through the miR-423-5p/GLIPR2 axis in diabetic nephropathy. J Cardiovasc Pharmacol 79(3):342–354. https://doi.org/10.1097/fjc.0000000000001177. (PMID: 10.1097/fjc.000000000000117734803150) ; Xu Y, Zhan X (2021) lncRNA KCNQ1OT1 regulated high glucose-induced proliferation, oxidative stress, extracellular matrix accumulation, and inflammation by miR-147a/SOX6 in diabetic nephropathy (DN). Endocr J. https://doi.org/10.1507/endocrj.EJ21-0514. (PMID: 10.1507/endocrj.EJ21-051434911869) ; Yang M, Wang X, Han Y et al (2021) Targeting the NLRP3 inflammasome in diabetic nephropathy. Curr Med Chem 28(42):8810–8824. https://doi.org/10.2174/0929867328666210705153109. (PMID: 10.2174/092986732866621070515310934225600) ; Ye J, She X, Liu Z et al (2021) Eukaryotic initiation factor 4A-3: a review of its physiological role and involvement in oncogenesis. Front Oncol. https://doi.org/10.3389/fonc.2021.712045. (PMID: 10.3389/fonc.2021.712045351551928733943) ; Zhang B, Ramesh G, Uematsu S, Akira S, Reeves WB (2008) TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol 19(5):923–932. https://doi.org/10.1681/ASN.2007090982. (PMID: 10.1681/ASN.2007090982182563562386719) ; Zhang C, Han X, Yang L et al (2020) Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus. Theranostics 10(24):10908–10924. https://doi.org/10.7150/thno.48264. (PMID: 10.7150/thno.48264330422617532688) ; Zhang H, Yan Y, Hu Q, Zhang X (2021) LncRNA MALAT1/microRNA let-7f/KLF5 axis regulates podocyte injury in diabetic nephropathy. Life Sci 266:118794. https://doi.org/10.1016/j.lfs.2020.118794. (PMID: 10.1016/j.lfs.2020.11879433232688) ; Zhang X, Wang W, Zhu W et al (2019) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci 20(22):5573. https://doi.org/10.3390/ijms20225573. (PMID: 10.3390/ijms20225573317172666888083)
  • Grant Information: 2020A1515110130 Guangdong Provincial Basic and Applied Basic Research Fund Regional Joint Fund Project (Youth Fund Project)
  • Contributed Indexing: Keywords: Diabetic nephropathy; High glucose; LncRNA SNHG16; NRLP3 inflammasome; RAS; TLR4
  • Substance Nomenclature: 0 (Cytokines) ; 0 (Inflammasomes) ; 0 (NF-kappa B) ; 0 (NLR Family, Pyrin Domain-Containing 3 Protein) ; 0 (Nlrp3 protein, mouse) ; 0 (Reactive Oxygen Species) ; 0 (RNA, Long Noncoding) ; 0 (RNA, Messenger) ; EC 1.15.1.1 (Superoxide Dismutase) ; 0 (Tlr4 protein, mouse) ; 0 (Toll-Like Receptor 4) ; 0 (SNHG16 lncRNA, human) ; 0 (TLR4 protein, human) ; 0 (NLRP3 protein, human)
  • Entry Date(s): Date Created: 20230119 Date Completed: 20230331 Latest Revision: 20230331
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -