Zum Hauptinhalt springen

Dual specificity and target gene selection by the MADS-domain protein FRUITFULL.

van Mourik H ; Chen, P ; et al.
In: Nature plants, Jg. 9 (2023-03-01), Heft 3, S. 473-485
Online academicJournal

Titel:
Dual specificity and target gene selection by the MADS-domain protein FRUITFULL.
Autor/in / Beteiligte Person: van Mourik H ; Chen, P ; Smaczniak, C ; Boeren, S ; Kaufmann, K ; Bemer, M ; Angenent, GC ; Muino, JM
Link:
Zeitschrift: Nature plants, Jg. 9 (2023-03-01), Heft 3, S. 473-485
Veröffentlichung: [London, UK] : Nature Publishing Group, a division of Macmillan Publishers Limited, [2015]-, 2023
Medientyp: academicJournal
ISSN: 2055-0278 (electronic)
DOI: 10.1038/s41477-023-01351-x
Schlagwort:
  • Flowers
  • Transcription Factors genetics
  • Transcription Factors metabolism
  • DNA metabolism
  • Gene Expression Regulation, Plant
  • Plant Proteins genetics
  • Plant Proteins metabolism
  • MADS Domain Proteins genetics
  • MADS Domain Proteins metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nat Plants] 2023 Mar; Vol. 9 (3), pp. 473-485. <i>Date of Electronic Publication: </i>2023 Feb 16.
  • MeSH Terms: Plant Proteins* / genetics ; Plant Proteins* / metabolism ; MADS Domain Proteins* / genetics ; MADS Domain Proteins* / metabolism ; Flowers ; Transcription Factors / genetics ; Transcription Factors / metabolism ; DNA / metabolism ; Gene Expression Regulation, Plant
  • References: Ludwig, L. S. et al. Transcriptional states and chromatin accessibility underlying human erythropoiesis. Cell Rep. 27, 3228–3240.e7 (2019). (PMID: 31189107657911710.1016/j.celrep.2019.05.046) ; Argelaguet, R. et al. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 576, 487–491 (2019). (PMID: 31827285692499510.1038/s41586-019-1825-8) ; Pawlak, M. et al. Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development. Genome Res. 29, 506–519 (2019). (PMID: 30760547639641210.1101/gr.244491.118) ; Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat. Commun. 11, 124 (2020). (PMID: 31913281694924210.1038/s41467-019-13888-7) ; Slattery, M. et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147, 1270–1282 (2011). (PMID: 22153072331906910.1016/j.cell.2011.10.053) ; Smaczniak, C., Muiño, J. M., Chen, D., Angenent, G. C. & Kaufmann, K. Differences in DNA binding specificity of floral homeotic protein complexes predict organ-specific target genes. Plant Cell 29, 1822–1835 (2017). (PMID: 28733422559050310.1105/tpc.17.00145) ; Smaczniak, C., Immink, R. G. H., Angenent, G. C. & Kaufmann, K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Development 139, 3081–3098 (2012). (PMID: 2287208210.1242/dev.074674) ; Schwarz-Sommer, Z. et al. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J. 11, 251–263 (1992). (PMID: 134676055644610.1002/j.1460-2075.1992.tb05048.x) ; Huang, H. et al. DNA binding properties of two Arabidopsis MADS domain proteins: binding consensus and dimer formation. Plant Cell 8, 81–94 (1996). (PMID: 8597661161083) ; de Folter, S. et al. Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17, 1424–1433 (2005). (PMID: 15805477109176510.1105/tpc.105.031831) ; Folter, Sde & Angenent, G. C. trans meets cis in MADS science. Trends Plant Sci. 11, 224–231 (2006). (PMID: 1661658110.1016/j.tplants.2006.03.008) ; Theißen, G. Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85 (2001). (PMID: 1116317210.1016/S1369-5266(00)00139-4) ; Airoldi, C. A., Bergonzi, S. & Davies, B. Single amino acid change alters the ability to specify male or female organ identity. Proc. Natl Acad. Sci. USA 107, 18898–18902 (2010). (PMID: 20956314297388010.1073/pnas.1009050107) ; Que, K. et al. Regulatory switch enforced by basic helix–loop–helix and ACT-domain mediated dimerizations of the maize transcription factor R. Proc. Natl Acad. Sci. USA 109, E2091–E2097 (2012). ; Camille, S. et al. A promiscuous intermediate underlies the evolution of LEAFY DNA binding specificity. Science 343, 645–648 (2014). (PMID: 10.1126/science.1248229) ; Lai, X. et al. The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat. Commun. 12, 4760 (2021). (PMID: 34362909834651710.1038/s41467-021-24978-w) ; Bemer, M. et al. FRUITFULL controls SAUR10 expression and regulates Arabidopsis growth and architecture. J. Exp. Bot. 68, 3391–3403 (2017). (PMID: 28586421585340110.1093/jxb/erx184) ; Mandel, M. A. & Yanofsky, M. F. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7, 1763–1771 (1995). (PMID: 8535133161036) ; Hempel, F. D. et al. Floral determination and expression of floral regulatory genes in Arabidopsis. Development 124, 3845–3853 (1997). (PMID: 936744010.1242/dev.124.19.3845) ; Ferrandiz, C., Gu, Q., Martienssen, R. & Yanofsky, M. F. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725–734 (2000). (PMID: 1064823110.1242/dev.127.4.725) ; Balanzà, V., Martínez-Fernández, I. & Ferrándiz, C. Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1. J. Exp. Bot. 65, 1193–1203 (2014). (PMID: 24465009393557410.1093/jxb/ert482) ; Balanzà, V. et al. Genetic control of meristem arrest and life span in Arabidopsis by a FRUITFULL-APETALA2 pathway. Nat. Commun. 9, 565 (2018). (PMID: 29422669580573510.1038/s41467-018-03067-5) ; Balanzà, V., Martínez-Fernández, I., Sato, S., Yanofsky, M. F. & Ferrándiz, C. Inflorescence meristem fate is dependent on seed development and FRUITFULL in Arabidopsis thaliana. Front. Plant Sci. 10, 1622 (2019). (PMID: 31921264693024010.3389/fpls.2019.01622) ; Ferrándiz, C., Liljegren, S. J. & Yanofsky, M. F. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289, 436–438 (2000). (PMID: 1090320110.1126/science.289.5478.436) ; Liljegren, S. J. et al. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404, 766–770 (2000). (PMID: 1078389010.1038/35008089) ; Roeder, A. H. K., Ferrándiz, C. & Yanofsky, M. F. The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr. Biol. 13, 1630–1635 (2003). (PMID: 1367859510.1016/j.cub.2003.08.027) ; Liljegren, S. J. et al. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116, 843–853 (2004). (PMID: 1503598610.1016/S0092-8674(04)00217-X) ; Gu, Q., Ferrandiz, C., Yanofsky, M. F. & Martienssen, R. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509–1517 (1998). (PMID: 950273210.1242/dev.125.8.1509) ; Di Marzo, M. et al. SEEDSTICK controls Arabidopsis fruit size by regulating cytokinin levels and FRUITFULL. Cell Rep. 30, 2846–2857.e3 (2020). (PMID: 3210175610.1016/j.celrep.2020.01.101) ; José Ripoll, J. et al. microRNA regulation of fruit growth. Nat. Plants 1, 15036 (2015). (PMID: 2724703610.1038/nplants.2015.36) ; Smaczniak, C. et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc. Natl Acad. Sci. USA 109, 1560–1565 (2012). (PMID: 22238427327718110.1073/pnas.1112871109) ; Smyth, D. R., Bowman, J. L. & Meyerowitz, E. M. Early flower development in Arabidopsis. Plant Cell 2, 755–767 (1990). (PMID: 2152125159928) ; Sudre, D. et al. Iron-dependent modifications of the flower transcriptome, proteome, metabolome, and hormonal content in an Arabidopsis ferritin mutant. J. Exp. Bot. 64, 2665–2688 (2013). (PMID: 23682113369794610.1093/jxb/ert112) ; Carbonell-Bejerano, P., Urbez, C., Carbonell, J., Granell, A. & Perez-Amador, M. A. A fertilization-independent developmental program triggers partial fruit development and senescence processes in pistils of Arabidopsis. Plant Physiol. 154, 163–172 (2010). (PMID: 20625003293816410.1104/pp.110.160044) ; Marsch-Martínez, N. & de Folter, S. Hormonal control of the development of the gynoecium. Curr. Opin. Plant Biol. 29, 104–114 (2016). (PMID: 2679913210.1016/j.pbi.2015.12.006) ; Kashkan, I. et al. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. N. Phytol. 233, 329–343 (2022). (PMID: 10.1111/nph.17792) ; Wellmer, F., Alves-Ferreira, M., Dubois, A., Riechmann, J. L. & Meyerowitz, E. M. Genome-wide analysis of gene expression during early Arabidopsis flower development. PLoS Genet. 2, e117 (2006). (PMID: 16789830152324710.1371/journal.pgen.0020117) ; Urbanus, S. L. et al. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana. BMC Plant Biol. 9, 5 (2009). (PMID: 19138429263093010.1186/1471-2229-9-5) ; Muiño, J. M., Kaufmann, K., van Ham, R. C. H. J., Angenent, G. C. & Krajewski, P. ChIP–seq analysis in R (CSAR): an R package for the statistical detection of protein-bound genomic regions. Plant Methods 7, 11 (2011). (PMID: 21554688311401710.1186/1746-4811-7-11) ; Kaufmann, K. et al. Orchestration of floral initiation by APETALA1. Science 328, 85–89 (2010). (PMID: 2036010610.1126/science.1185244) ; Gregis, V. et al. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol. 14, R56 (2013). (PMID: 23759218370684510.1186/gb-2013-14-6-r56) ; Pajoro, A. et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development. Genome Biol. 15, R41 (2014). (PMID: 24581456405484910.1186/gb-2014-15-3-r41) ; Akiva, S.-K. et al. The flowering hormone florigen accelerates secondary cell wall biogenesis to harmonize vascular maturation with reproductive development. Proc. Natl Acad. Sci. USA 116, 16127–16136 (2019). (PMID: 10.1073/pnas.1906405116) ; van Gelderen, K., van Rongen, M., Liu, A., Otten, A. & Offringa, R. An INDEHISCENT-controlled auxin response specifies the separation layer in early Arabidopsis fruit. Mol. Plant 9, 857–869 (2016). (PMID: 2699529610.1016/j.molp.2016.03.005) ; Yanofsky, M. F. et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346, 35–39 (1990). (PMID: 197326510.1038/346035a0) ; Aichinger, E. et al. CHD3 proteins and polycomb group proteins antagonistically determine cell identity in Arabidopsis. PLoS Genet. 5, e1000605 (2009). (PMID: 19680533271883010.1371/journal.pgen.1000605) ; Li, G. et al. ISWI proteins participate in the genome-wide nucleosome distribution in Arabidopsis. Plant J. 78, 706–714 (2014). (PMID: 2460621210.1111/tpj.12499) ; Yamaguchi, N. et al. Chromatin-mediated feed-forward auxin biosynthesis in floral meristem determinacy. Nat. Commun. 9, 5290 (2018). (PMID: 30538233628999610.1038/s41467-018-07763-0) ; Jolma, A. et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res. 20, 861–873 (2010). (PMID: 20378718287758210.1101/gr.100552.109) ; Bailey, T. L., Johnson, J., Grant, C. E. & Noble, W. S. The MEME Suite. Nuceic Acids Res. https://doi.org/10.1093/nar/gkv416 (2015). ; Muiño, J. M., Smaczniak, C., Angenent, G. C., Kaufmann, K. & Van Dijk, A. D. J. Structural determinants of DNA recognition by plant MADS-domain transcription factors. Nucleic Acids Res. 42, 2138–2146 (2014). (PMID: 2427549210.1093/nar/gkt1172) ; Avila Cobos, F., Alquicira-Hernandez, J., Powell, J. E., Mestdagh, P. & De Preter, K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat. Commun. 11, 5650 (2020). (PMID: 33159064764864010.1038/s41467-020-19015-1) ; Newman, A. M. et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12, 453–457 (2015). (PMID: 25822800473964010.1038/nmeth.3337) ; Eeckhoute, J., Métivier, R. & Salbert, G. Defining specificity of transcription factor regulatory activities. J. Cell Sci. 122, 4027–4034 (2009). (PMID: 1991049410.1242/jcs.054916) ; Jana, T., Brodsky, S. & Barkai, N. Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet. 37, 421–432 (2021). (PMID: 3341401310.1016/j.tig.2020.12.001) ; Immink, R. G. H. et al. SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol. 10, R24 (2009). (PMID: 19243611268827410.1186/gb-2009-10-2-r24) ; Gregis, V., Sessa, A., Dorca-Fornell, C. & Kater, M. M. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J. 60, 626–637 (2009). (PMID: 1965634310.1111/j.1365-313X.2009.03985.x) ; Alvarez-Buylla, E. R. et al. Flower development. Arab. B. 8, e0127 (2010). (PMID: 10.1199/tab.0127) ; Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014). (PMID: 24695404410359010.1093/bioinformatics/btu170) ; Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635) ; Liao, Y., Smyth, G. K. & Shi, W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014). (PMID: 2422767710.1093/bioinformatics/btt656) ; Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8) ; Van Mourik, H., Muiño, J. M., Pajoro, A., Angenent, G. C. & Kaufmann, K. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP–seq: experimental protocol and computational analysis. Methods Mol. Biol. 1284, 93–121 (2015). (PMID: 2575776910.1007/978-1-4939-2444-8_5) ; Kaufmann, K. et al. Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP–seq) or hybridization to whole genome arrays (ChIP–ChIP). Nat. Protoc. 5, 457–472 (2010). (PMID: 2020366310.1038/nprot.2009.244) ; Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009). (PMID: 19451168270523410.1093/bioinformatics/btp324) ; Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010). (PMID: 20110278283282410.1093/bioinformatics/btq033) ; Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 1902991010.1038/nbt.1511) ; Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011). (PMID: 2125476010.1021/pr101065j) ; Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016). (PMID: 2734871210.1038/nmeth.3901) ; Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629 (2020). (PMID: 3188299310.1093/bioinformatics/btz931) ; Li, R. et al. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25, 1966–1967 (2009). (PMID: 1949793310.1093/bioinformatics/btp336) ; Bolstad, B. M., Irizarry, R. A., Astrand, M. & Speed, T. P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003). (PMID: 1253823810.1093/bioinformatics/19.2.185)
  • Substance Nomenclature: 0 (Plant Proteins) ; 0 (MADS Domain Proteins) ; 0 (Transcription Factors) ; 9007-49-2 (DNA)
  • Entry Date(s): Date Created: 20230216 Date Completed: 20230322 Latest Revision: 20230516
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -