Zum Hauptinhalt springen

Degassing of early-formed planetesimals restricted water delivery to Earth.

Newcombe, ME ; Nielsen, SG ; et al.
In: Nature, Jg. 615 (2023-03-01), Heft 7954, S. 854-857
Online academicJournal

Titel:
Degassing of early-formed planetesimals restricted water delivery to Earth.
Autor/in / Beteiligte Person: Newcombe, ME ; Nielsen, SG ; Peterson, LD ; Wang, J ; Alexander, CMO ; Sarafian, AR ; Shimizu, K ; Nittler, LR ; Irving, AJ
Link:
Zeitschrift: Nature, Jg. 615 (2023-03-01), Heft 7954, S. 854-857
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-05721-5
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.
  • Language: English
  • [Nature] 2023 Mar; Vol. 615 (7954), pp. 854-857. <i>Date of Electronic Publication: </i>2023 Mar 15.
  • References: O’Brien, D. P., Izidoro, A., Jacobson, S. A., Raymond, S. N. & Rubie, D. C. The delivery of water during terrestrial planet formation. Space Sci. Rev. 214, 47 (2018). (PMID: 10.1007/s11214-018-0475-8) ; McCubbin, F. M. & Barnes, J. J. Origin and abundances of H 2 O in the terrestrial planets, Moon, and asteroids. Earth Planet. Sci. Lett. 526, 115771 (2019). (PMID: 10.1016/j.epsl.2019.115771) ; Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019). (PMID: 30746449635786410.1126/sciadv.aau3669) ; Hirschmann, M. M. Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. Am. Mineral. 101, 540–553 (2016). (PMID: 10.2138/am-2016-5452) ; Sarafian, A. R., Nielsen, S. G., Marschall, H. R., McCubbin, F. M. & Monteleone, B. D. Early accretion of water in the inner solar system from a carbonaceous chondrite-like source. Science 346, 623–626 (2014). (PMID: 2535997110.1126/science.1256717) ; Alexander, C. M. O’D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012). (PMID: 2279840510.1126/science.1223474) ; Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012). (PMID: 10.1016/j.epsl.2011.10.040) ; Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011). (PMID: 10.1016/j.epsl.2011.08.047) ; Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. 114, 6712–6716 (2017). (PMID: 28607079549526310.1073/pnas.1704461114) ; Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011). (PMID: 2164296110.1038/nature10201) ; Morbidelli, A. et al. Contemporary formation of early Solar System planetesimals at two distinct radial locations. Nat. Astron. 6, 72–79 (2022). (PMID: 10.1038/s41550-021-01517-7) ; Izidoro, A. et al. Planetesimal rings as the cause of the Solar System’s planetary architecture. Nat. Astron. 6, 357–366 (2022). (PMID: 10.1038/s41550-021-01557-z) ; Alexander, C. M. O’D., McKeegan, K. D. & Altwegg, K. Water reservoirs in small planetary bodies: meteorites, asteroids, and comets. Space Sci. Rev. 214, 36 (2018). (PMID: 10.1007/s11214-018-0474-9) ; Morbidelli, A. et al. Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016). (PMID: 10.1016/j.icarus.2015.11.027) ; Sarafian, A. R. et al. Early accretion of water and volatile elements to the inner Solar System: evidence from angrites. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20160209 (2017). (PMID: 10.1098/rsta.2016.0209) ; Saal, A. E., Hauri, E. H., Van Orman, J. A. & Rutherford, M. J. Hydrogen isotopes in lunar volcanic glasses and melt inclusions reveal a carbonaceous chondrite heritage. Science 340, 1317–1320 (2013). (PMID: 2366164110.1126/science.1235142) ; Alexander, C. M. O’D., Barber, D. J. & Hutchison, R. The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 3045–3057 (1989). (PMID: 10.1016/0016-7037(89)90180-4) ; Robert, F., Merlivat, L. & Javoy, M. Deuterium concentration in the early Solar System: hydrogen and oxygen isotope study. Nature 282, 785–789 (1979). (PMID: 10.1038/282785a0) ; Piani, L. et al. Earth’s water may have been inherited from material similar to enstatite chondrite meteorites. Science 369, 1110–1113 (2020). (PMID: 3285533710.1126/science.aba1948) ; O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014). (PMID: 10.1016/j.icarus.2014.05.009) ; Sanborn, M. E. & Yin, Q.-Z. in Proc. 50th Lunar and Planetary Science Conference 2019, LPI contribution no. 2132, id. 1498 (2019). ; Budde, G. et al. Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303 (2016). (PMID: 10.1016/j.epsl.2016.09.020) ; Hevey, P. J. & Sanders, I. S. A model for planetesimal meltdown by 26 Al and its implications for meteorite parent bodies. Meteorit. Planet. Sci. 41, 95–106 (2006). (PMID: 10.1111/j.1945-5100.2006.tb00195.x) ; Elkins-Tanton, L. T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012). (PMID: 10.1146/annurev-earth-042711-105503) ; McSween, H. Y. Jr, Ghosh, A., Grimm, R. E., Wilson, L. & Young, E. D. in Asteroids III (eds Bottke, W. F., Cellino, A., Paolicchi, P. & Binzel, R. P.) 559–571 (Univ. Arizona Press, 2002). ; Lichtenberg, T. et al. A water budget dichotomy of rocky protoplanets from 26 Al-heating. Nat. Astron. 3, 307–313 (2019). (PMID: 10.1038/s41550-018-0688-5) ; Schaefer, L. & Fegley, B. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462–483 (2007). (PMID: 10.1016/j.icarus.2006.09.002) ; Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H 2 O, C, N) volatiles and from H 2 O/Ce, CO 2 /Ba, and CO 2 /Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018). (PMID: 10.1016/j.epsl.2018.08.023) ; Schiller, M., Bizzarro, M. & Fernandes, V. A. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507–510 (2018). (PMID: 29565359588442110.1038/nature25990) ; Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017). (PMID: 2812823910.1038/nature20830) ; Hopp, T., Dauphas, N., Spitzer, F., Burkhardt, C. & Kleine, T. Earth’s accretion inferred from iron isotopic anomalies of supernova nuclear statistical equilibrium origin. Earth Planet. Sci. Lett. 577, 117245 (2022). (PMID: 10.1016/j.epsl.2021.117245) ; Newcombe, M. E., Plan, T., Asimow, P. D., Barth, A. & Hauri, E. Water-in-olivine magma ascent chronometry: every crystal is a clock. J. Volcanol. Geotherm. Res. 398, 106872 (2020). (PMID: 10.1016/j.jvolgeores.2020.106872) ; Hauri, E. H., Gaetani, G. A. & Green, T. H. Partitioning of water during melting of the Earth’s upper mantle at H 2 O-undersaturated conditions. Earth Planet. Sci. Lett. 248, 715–734 (2006). (PMID: 10.1016/j.epsl.2006.06.014) ; Mittlefehldt, D. W., Bogard, D. D., Berkley, J. L. & Garrison, D. H. Brachinites: igneous rocks from a differentiated asteroid. Meteorit. Planet. Sci. 38, 1601–1625 (2003). (PMID: 10.1111/j.1945-5100.2003.tb00004.x) ; Alexander, C. M. O’D. Quantitative models for the elemental and isotopic fractionations in chondrites: the carbonaceous chondrites. Geochim. Cosmochim. Acta 254, 277–309 (2019). (PMID: 10.1016/j.gca.2019.02.008) ; Spitzer, F., Burkhardt, C., Nimmo, F. & Kleine, T. Nucleosynthetic Pt isotope anomalies and the Hf-W chronology of core formation in inner and outer solar system planetesimals. Earth Planet. Sci. Lett. 576, 117211 (2021). (PMID: 10.1016/j.epsl.2021.117211) ; Sanborn, M. E. et al. Carbonaceous achondrites Northwest Africa 6704/6693: milestones for early Solar System chronology and genealogy. Geochim. Cosmochim. Acta 245, 577–596 (2019). (PMID: 10.1016/j.gca.2018.10.004) ; Hui, H., Peslier, A. H., Zhang, Y. & Neal, C. R. Water in lunar anorthosites and evidence for a wet early Moon. Nat. Geosci. 6, 177–180 (2013). (PMID: 10.1038/ngeo1735) ; Hui, H. et al. A heterogeneous lunar interior for hydrogen isotopes as revealed by the lunar highlands samples. Earth Planet. Sci. Lett. 473, 14–23 (2017). (PMID: 10.1016/j.epsl.2017.05.029) ; Sarafian, A. R. et al. Angrite meteorites record the onset and flux of water to the inner solar system. Geochim. Cosmochim. Acta 212, 156–166 (2017). (PMID: 10.1016/j.gca.2017.06.001) ; Sarafian, A. R. et al. The water and fluorine content of 4 Vesta. Geochim. Cosmochim. Acta 266, 568–581 (2019). (PMID: 10.1016/j.gca.2019.08.023) ; Hauri, E. H., Saal, A. E., Rutherford, M. J. & Van Orman, J. A. Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015). (PMID: 10.1016/j.epsl.2014.10.053) ; Rubin, A. E. Carbonaceous and noncarbonaceous iron meteorites: differences in chemical, physical, and collective properties. Meteorit. Planet. Sci. 53, 2357–2371 (2018). (PMID: 10.1111/maps.13128) ; Fu, R. R. et al. The interior structure of Ceres as revealed by surface topography. Earth Planet. Sci. Lett. 476, 153–164 (2017). (PMID: 10.1016/j.epsl.2017.07.053) ; Barrat, J.-A., Sansjofre, P., Yamaguchi, A., Greenwood, R. C. & Gillet, P. Carbon isotopic variation in ureilites: evidence for an early, volatile-rich Inner Solar System. Earth Planet. Sci. Lett. 478, 143–149 (2017). (PMID: 10.1016/j.epsl.2017.08.039) ; Budde, G., Burkhardt, C. & Kleine, T. Molybdenum isotopic evidence for the late accretion of outer Solar System material to Earth. Nat. Astron. 3, 736–741 (2019). (PMID: 10.1038/s41550-019-0779-y) ; Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020). (PMID: 32161386721201810.1038/s41586-020-2069-3) ; Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020). (PMID: 10.1038/s41550-019-0959-9) ; Irving, A. J., Kuehner, S. M. & Ziegler, K. in Proc. 78th Annual Meeting of the Meteoritical Society, LPI contribution no. 1856, p. 5254 (2015). ; Mills, R. D., Simon, J. I., Alexander, C. M. O’D., Wang, J. & Hauri, E. H. Water in alkali feldspar: the effect of rhyolite generation on the lunar hydrogen budget. Geochem. Perspect. Lett. 3, 115–123 (2017). (PMID: 10.7185/geochemlet.1712) ; Hallis, L. et al. Effects of shock and Martian alteration on Tissint hydrogen isotope ratios and water content. Geochim. Cosmochim. Acta 200, 280–294 (2017). (PMID: 10.1016/j.gca.2016.12.035) ; Mane, P. et al. Hydrogen isotopic composition of the Martian mantle inferred from the newest Martian meteorite fall, Tissint. Meteorit. Planet. Sci. 51, 2073–2091 (2016). (PMID: 10.1111/maps.12717) ; Peslier, A. H. A review of water contents of nominally anhydrous natural minerals in the mantles of Earth, Mars and the Moon. J. Volcanol. Geotherm. Res. 197, 239–258 (2010). (PMID: 10.1016/j.jvolgeores.2009.10.006) ; Johnson, E. A. & Rossman, G. R. A survey of hydrous species and concentrations in igneous feldspars. Am. Mineral. 89, 586–600 (2004). (PMID: 10.2138/am-2004-0413) ; Schaefer, L. & Fegley, B. Jr Chemistry of atmospheres formed during accretion of the Earth and other terrestrial planets. Icarus 208, 438–448 (2010). (PMID: 10.1016/j.icarus.2010.01.026) ; Thompson, M. A. et al. Composition of terrestrial exoplanet atmospheres from meteorite outgassing experiments. Nat. Astron. 5, 575–585 (2021). (PMID: 10.1038/s41550-021-01338-8) ; Gaillard, F. et al. Redox controls during magma ocean degassing. Earth Planet. Sci. Lett. 577, 117255 (2022). (PMID: 10.1016/j.epsl.2021.117255) ; Gaillard, F. & Scaillet, B. A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014). (PMID: 10.1016/j.epsl.2014.07.009) ; Gattacceca, J., Mccubbin, F. M., Bouvier, A. & Grossman, J. The Meteoritical Bulletin, No. 107. Meteorit. Planet. Sci. 55, 460–462 (2020). (PMID: 10.1111/maps.13440) ; Huyskens, M. H., Sanborn, M. E., Yin, Q. Z. & Agee, C. B. in Proc. 49th Lunar and Planetary Science Conference, LPI contribution no. 2083, id. 2311 (2018). ; Srinivasan, P. et al. Silica-rich volcanism in the early solar system dated at 4.565 Ga. Nat. Commun. 9, 3036 (2018). (PMID: 30072693607270710.1038/s41467-018-05501-0) ; Goodrich, C. A. et al. Petrogenesis and provenance of ungrouped achondrite Northwest Africa 7325 from petrology, trace elements, oxygen, chromium and titanium isotopes, and mid-IR spectroscopy. Geochim. Cosmochim. Acta 203, 381–403 (2017). (PMID: 30393389620815710.1016/j.gca.2016.12.021) ; Dunlap, D. R., Ku, Y. J., Garvie, L. A. J. & Wadhwa, M. in 46th Lunar and Planetary Science Conference, LPI contribution no. 1832, p. 2570 (2015). ; Ruzicka, A., Grossman, J., Bouvier, A., Herd, C. D. K. & Agee, C. B. The Meteoritical Bulletin, No. 101. Meteorit. Planet. Sci. 50, 1661–1661 (2015). (PMID: 10.1111/maps.12490) ; Abe, D., Mikouchi, T. & Irving, A. J. in Proc. 52nd Lunar and Planetary Science Conference, LPI contribution no. 2548, id. 1813 (2021). ; Hibiya, Y. et al. The origin of the unique achondrite Northwest Africa 6704: constraints from petrology, chemistry and Re–Os, O and Ti isotope systematics. Geochim. Cosmochim. Acta 245, 597–627 (2019). (PMID: 3098359910.1016/j.gca.2018.04.031) ; Sanborn, M. E., Yin, Q.-Z., Irving, A. J. & Bunch, T. E. in Proc. 46th Lunar and Planetary Science Conference, LPI contribution no. 1832, p. 2259 (2015). ; Bunch, T. E., Irving, A. J., Rumble, D. & Korotev, R. L. Evidence for a carbonaceous chondrite parent body with near-TFL oxygen isotopes from unique metachondrite Northwest Africa 2788. American Geophysical Union, Fall Meeting 2006, abstracts id. P51E-1246 (2006). ; Warren, P. H. et al. Northwest Africa 6693: a new type of FeO-rich, low-Δ 17 O, poikilitic cumulate achondrite. Geochim. Cosmochim. Acta 107, 135–154 (2013). (PMID: 10.1016/j.gca.2012.12.025) ; Yin, Q.-Z., Wimpenny, J. & Amelin, Y. Al-Mg systematics in the ungrouped achondrites NWA 6704. Meteorit. Planet. Sci. Suppl. 76, 5160 (2013). ; Barnes, J. J. et al. Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chem. Geol. 337–338, 48–55 (2013). (PMID: 10.1016/j.chemgeo.2012.11.015) ; Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002). (PMID: 10.1016/S0009-2541(01)00374-6) ; Koga, K., Hauri, E., Hirschmann, M. & Bell, D. Hydrogen concentration analyses using SIMS and FTIR: comparison and calibration for nominally anhydrous minerals. Geochem. Geophys. Geosyst. 4, 1019 (2003). (PMID: 10.1029/2002GC000378) ; Mosenfelder, J. L. et al. Analysis of hydrogen in olivine by SIMS: evaluation of standards and protocol. Am. Mineral. 96, 1725–1741 (2011). (PMID: 10.2138/am.2011.3810) ; Kumamoto, K. M., Warren, J. M. & Hauri, E. H. New SIMS reference materials for measuring water in upper mantle minerals. Am. Mineral. 102, 537–547 (2017). (PMID: 10.2138/am-2017-5863CCBYNCND) ; Long, G. L. & Winefordner, J. D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 55, 712A–724A (1983). ; Hirschmann, M. M., Withers, A. C., Ardia, P. & Foley, N. T. Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345–348, 38–48 (2012). (PMID: 10.1016/j.epsl.2012.06.031) ; Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D. & Rauch, F. Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res. Solid Earth 108, 2105 (2003). (PMID: 10.1029/2001JB000679) ; Withers, A. C., Bureau, H., Raepsaet, C. & Hirschmann, M. M. Calibration of infrared spectroscopy by elastic recoil detection analysis of H in synthetic olivine. Chem. Geol. 334, 92–98 (2012). (PMID: 10.1016/j.chemgeo.2012.10.002) ; Mosenfelder, J. L. & Rossman, G. R. Analysis of hydrogen and fluorine in pyroxenes: I. Orthopyroxene. Am. Mineral. 98, 1026–1041 (2013). (PMID: 10.2138/am.2013.4291) ; Warren, J. M. & Hauri, E. H. Pyroxenes as tracers of mantle water variations. J. Geophys. Res. Solid Earth 119, 1851–1881 (2014). (PMID: 10.1002/2013JB010328) ; King, P. L. et al. Analytical techniques for volatiles: a case study using intermediate (andesitic) glasses. Am. Mineral. 87, 1077–1089 (2002). (PMID: 10.2138/am-2002-8-904) ; Lin, Y., Hui, H., Li, Y., Xu, Y. & Van Westrenen, W. A lunar hygrometer based on plagioclase-melt partitioning of water. Geochem. Perspect. Lett. 10, 14–19 (2019). (PMID: 10.7185/geochemlet.1908) ; O’Leary, J. A., Gaetani, G. A. & Hauri, E. H. The effect of tetrahedral Al 3+ on the partitioning of water between clinopyroxene and silicate melt. Earth Planet. Sci. Lett. 297, 111–120 (2010). (PMID: 10.1016/j.epsl.2010.06.011) ; Dobson, P. F., Skogby, H. & Rossman, G. R. Water in boninite glass and coexisting orthopyroxene: concentration and partitioning. Contrib. Mineral. Petrol. 118, 414–419 (1995). (PMID: 10.1007/s004100050023) ; Bouvier, A., Gattacceca, J., Agee, C., Grossman, J. & Metzler, K. The Meteoritical Bulletin, No. 104. Meteorit. Planet. Sci. 52, 2284–2284 (2017). (PMID: 10.1111/maps.12930) ; Collinet, M. & Grove, T. L. Widespread production of silica- and alkali-rich melts at the onset of planetesimal melting. Geochim. Cosmochim. Acta 277, 334–357 (2020). (PMID: 10.1016/j.gca.2020.03.005) ; Collinet, M. & Grove, T. L. Incremental melting in the ureilite parent body: initial composition, melting temperatures, and melt compositions. Meteorit. Planet. Sci. 55, 832–856 (2020). (PMID: 10.1111/maps.13471) ; Caseres, J. R., Mosenfelder, J. L. & Hirschmann, M. M. in Proc. 48th Lunar and Planetary Science Conference, LPI contribution no. 1964, id. 2303 (2017). ; Callegaro, S. et al. The quintet completed: the partitioning of sulfur between nominally volatile-free minerals and silicate melts. Am. Mineral 105, 697–707 (2020). (PMID: 10.2138/am-2020-7188) ; Dalou, C., Koga, K. T., Shimizu, N., Boulon, J. & Devidal, J.-L. Experimental determination of F and Cl partitioning between lherzolite and basaltic melt. Contrib. Mineral. Petrol. 163, 591–609 (2012). (PMID: 10.1007/s00410-011-0688-2) ; Ustunisik, G., Nekvasil, H., Lindsley, D. H. & McCubbin, F. M. Degassing pathways of Cl-, F-, H-, and S-bearing magmas near the lunar surface: implications for the composition and Cl isotopic values of lunar apatite. Am. Mineral. 100, 1717–1727 (2015). (PMID: 10.2138/am-2015-4883) ; Young, E. D. et al. Near-equilibrium isotope fractionation during planetesimal evaporation. Icarus 323, 1–15 (2019). (PMID: 30739951636431710.1016/j.icarus.2019.01.012)
  • Grant Information: 80NSSC20K0336 United States NASA NASA; 80NSSC22K0043 United States NASA NASA
  • Entry Date(s): Date Created: 20230316 Date Completed: 20230331 Latest Revision: 20231109
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -