Zum Hauptinhalt springen

Thousands of conductance levels in memristors integrated on CMOS.

Rao, M ; Tang, H ; et al.
In: Nature, Jg. 615 (2023-03-01), Heft 7954, S. 823-829
Online academicJournal

Titel:
Thousands of conductance levels in memristors integrated on CMOS.
Autor/in / Beteiligte Person: Rao, M ; Tang, H ; Wu, J ; Song, W ; Zhang, M ; Yin, W ; Zhuo, Y ; Kiani, F ; Chen, B ; Jiang, X ; Liu, H ; Chen, HY ; Midya, R ; Ye, F ; Jiang, H ; Wang, Z ; Wu, M ; Hu, M ; Wang, H ; Xia, Q ; Ge, N ; Li, J ; Yang, JJ
Link:
Zeitschrift: Nature, Jg. 615 (2023-03-01), Heft 7954, S. 823-829
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-05759-5
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, U.S. Gov't, Non-P.H.S.; Research Support, U.S. Gov't, P.H.S.; Research Support, Non-U.S. Gov't
  • Language: English
  • [Nature] 2023 Mar; Vol. 615 (7954), pp. 823-829. <i>Date of Electronic Publication: </i>2023 Mar 29.
  • References: Chua, L. O. Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971). (PMID: 10.1109/TCT.1971.1083337) ; Valov, I., Waser, R., Jameson, J. R. & Kozicki, M. N. Electrochemical metallization memories—fundamentals, applications, prospects. Nanotechnology 22, 254003 (2011). (PMID: 2157219110.1088/0957-4484/22/25/254003) ; Yang, Y. & Huang, R. Probing memristive switching in nanoionic devices. Nat. Electron. 1, 274–287 (2018). (PMID: 10.1038/s41928-018-0069-1) ; Wen, W., Wu, C., Wang, Y., Chen, Y. & Li, H. Learning structured sparsity in deep neural networks. In Advances in Neural Information Processing Systems 29 (eds Lee, D. D., et al.), 2082–2090 (Curan Associates, 2016). ; Wan, W. et al. A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022). (PMID: 35978128938548210.1038/s41586-022-04992-8) ; Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical memristors for higher-complexity neuromorphic computing.Nat. Rev. Mater. 7, 575–591 (2022). (PMID: 10.1038/s41578-022-00434-z) ; Xue, C.-X. et al. A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices. Nat. Electron. 4, 81–90 (2021). (PMID: 10.1038/s41928-020-00505-5) ; Lanza, M. et al. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022). (PMID: 3565346410.1126/science.abj9979) ; Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020). (PMID: 3199681810.1038/s41586-020-1942-4) ; Zhang, W. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020). (PMID: 10.1038/s41928-020-0435-7) ; Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018). (PMID: 10.1038/s41928-018-0092-2) ; Zidan, M. A., Strachan, J. P. & Lu, W. D. The future of electronics based on memristive systems. Nat. Electron. 1, 22–29 (2018). (PMID: 10.1038/s41928-017-0006-8) ; Yu, S. Neuro-inspired computing with emerging nonvolatile memorys. Proc. IEEE 106, 260–285 (2018). (PMID: 10.1109/JPROC.2018.2790840) ; Jung, S. et al. A crossbar array of magnetoresistive memory devices for in-memory computing. Nature 601, 211–216 (2022). (PMID: 3502259010.1038/s41586-021-04196-6) ; Sangwan, V. K. & Hersam, M. C. Neuromorphic nanoelectronic materials. Nat. Nanotechnol. 15, 517–528 (2020). (PMID: 3212338110.1038/s41565-020-0647-z) ; Burr, G. W. A role for analogue memory in AI hardware. Nat. Mach. Intell. 1, 10–11 (2019). (PMID: 10.1038/s42256-018-0007-y) ; Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020). (PMID: 10.1038/s41928-020-00473-w) ; Fuller, E. J. et al. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 364, 570–574 (2019). (PMID: 3102389010.1126/science.aaw5581) ; Choi, C. et al. Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence.Nat. Electron. 5, 386–393 (2022). (PMID: 10.1038/s41928-022-00778-y) ; Lim, D.-H. et al. Spontaneous sparse learning for PCM-based memristor neural networks. Nat. Commun. 12, 319 (2021). (PMID: 33436611780397510.1038/s41467-020-20519-z) ; Xu, X. et al. Scaling for edge inference of deep neural networks. Nat. Electron. 1, 216–222 (2018). (PMID: 10.1038/s41928-018-0059-3) ; Sun, Y. et al. A Ti/AlO x /TaO x /Pt analog synapse for memristive neural network. IEEE Electron Device Lett. 39, 1298–1301 (2018). (PMID: 10.1109/LED.2018.2860053) ; Stathopoulos, S. et al. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 7, 17532 (2017). (PMID: 29235524572748510.1038/s41598-017-17785-1) ; Kim, H., Mahmoodi, M. R., Nili, H. & Strukov, D. B. 4K-memristor analog-grade passive crossbar circuit. Nat. Commun. 12, 5198 (2021). (PMID: 34465783840821610.1038/s41467-021-25455-0) ; Zidan, M. A. et al. A general memristor-based partial differential equation solver. Nat. Electron. 1, 411–420 (2018). (PMID: 10.1038/s41928-018-0100-6) ; Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018). (PMID: 10.1038/s41928-017-0002-z) ; Mackin, C. et al. Optimised weight programming for analogue memory-based deep neural networks. Nat. Commun. 13, 3765 (2022). (PMID: 35773285924705110.1038/s41467-022-31405-1) ; Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with reproducible high performance based on engineered dislocations. Nat. Mater. 17, 335–340 (2018). (PMID: 2935864210.1038/s41563-017-0001-5) ; Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8, 15199 (2017). (PMID: 28497781543729810.1038/ncomms15199) ; Hinton, G. The forward–forward algorithm: some preliminary investigations. Preprint at https://arxiv.org/abs/2212.13345 (2022). ; Yan, Z., Hu, X. S. & Shi, Y. SWIM: Selective write-verify for computing-in-memory neural accelerators. Preprint at https://arxiv.org/abs/2202.08395 (2022). ; Chen, B. et al. A memristor-based hybrid analog-digital computing platform for mobile robotics. Sci. Robot. 5, eabb6938 (2020). (PMID: 3308748110.1126/scirobotics.abb6938) ; Choi, S., Yang, Y. & Lu, W. Random telegraph noise and resistance switching analysis of oxide based resistive memory. Nanoscale 6, 400–404 (2014). (PMID: 2420223510.1039/C3NR05016E) ; Ielmini, D., Nardi, F. & Cagli, C. Resistance-dependent amplitude of random telegraph-signal noise in resistive switching memories. Appl. Phys. Lett. 96, 053503 (2010). (PMID: 10.1063/1.3304167) ; Puglisi, F. M., Pavan, P., Padovani, A., Larcher, L. & Bersuker, G. Random telegraph signal noise properties of HfOx RRAM in high resistive state. In 2012 Proc. European Solid-State Device Research Conference (ESSDERC), 274–277 (IEEE, 2012). ; Lee, J.-K. et al. Extraction of trap location and energy from random telegraph noise in amorphous TiO x resistance random access memories. Appl. Phys. Lett. 98, 143502 (2011). (PMID: 10.1063/1.3575572) ; Puglisi, F. M., Padovani, A., Larcher, L. & Pavan, P. Random telegraph noise: measurement, data analysis, and interpretation. In 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), 1–9 (IEEE, 2017). ; Puglisi, F. M., Zagni, N., Larcher, L. & Pavan, P. Random telegraph noise in resistive random access memories: compact modeling and advanced circuit design. IEEE Trans. Electron Devices 65, 2964–2972 (2018). (PMID: 10.1109/TED.2018.2833208) ; Yang, Y. et al. Probing nanoscale oxygen ion motion in memristive systems. Nat. Commun. 8, 15173 (2017). (PMID: 28469257541860510.1038/ncomms15173) ; Puglisi, F. M. Noise in Nanoscale Semiconductor Devices (ed. Grassor, T.), 87–133 (Springer, 2020). ; Hui, F. & Lanza, M. Scanning probe microscopy for advanced nanoelectronics. Nat. Electron. 2, 221–229 (2019). (PMID: 10.1038/s41928-019-0264-8) ; Celano, U. et al. Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14, 2401–2406 (2014). (PMID: 2472042510.1021/nl500049g) ; Du, H. et al. Nanosized conducting filaments formed by atomic-scale defects in redox-based resistive switching memories. Chem. Mater. 29, 3164–3173 (2017). (PMID: 10.1021/acs.chemmater.7b00220) ; Puglisi, F. M., Larcher, L., Padovani, A. & Pavan, P. A complete statistical investigation of RTN in HfO 2 -based RRAM in high resistive state. IEEE Trans. Electron Devices 62, 2606–2613 (2015). (PMID: 10.1109/TED.2015.2439812) ; Ambrogio, S. et al. Statistical fluctuations in HfO x resistive-switching memory: part II—random telegraph noise. IEEE Trans. Electron Devices 61, 2920–2927 (2014). (PMID: 10.1109/TED.2014.2330202) ; Becker, T. et al. An electrical model for trap coupling effects on random telegraph noise. IEEE Electron Device Lett. 41, 1596–1599 (2020). (PMID: 10.1109/LED.2020.3015842) ; Brivio, S., Frascaroli, J., Covi, E. & Spiga, S. Stimulated ionic telegraph noise in filamentary memristive devices. Sci. Rep. 9, 6310 (2019). (PMID: 30988321646535610.1038/s41598-019-41497-3) ; Miao, F. et al. Anatomy of a nanoscale conduction channel reveals the mechanism of a high‐performance memristor. Adv. Mater. 23, 5633–5640 (2011). (PMID: 2206542710.1002/adma.201103379) ; Zhou, Y. et al. The effects of oxygen vacancies on ferroelectric phase transition of HfO 2 -based thin film from first-principle. Comput. Mater. Sci. 167, 143–150 (2019). (PMID: 10.1016/j.commatsci.2019.05.041) ; Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999). (PMID: 10.1103/PhysRevB.59.1758) ; Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). (PMID: 10.1103/PhysRevB.54.11169) ; Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). (PMID: 1006232810.1103/PhysRevLett.77.3865) ; Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976). (PMID: 10.1103/PhysRevB.13.5188) ; Lyons, J. L., Janotti, A. & Van de Walle, C. G. The role of oxygen-related defects and hydrogen impurities in HfO 2 and ZrO 2 . Microelectron. Eng. 88, 1452–1456 (2011). (PMID: 10.1016/j.mee.2011.03.099) ; Monaghan, S., Hurley, P. K., Cherkaoui, K., Negara, M. A. & Schenk, A. Determination of electron effective mass and electron affinity in HfO 2 using MOS and MOSFET structures. Solid State Electron. 53, 438–444 (2009). (PMID: 10.1016/j.sse.2008.09.018) ; Zhao, X. & Vanderbilt, D. First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65, 233106 (2002). (PMID: 10.1103/PhysRevB.65.233106)
  • Grant Information: FA9550-19-1-0213 US Airforce Research Laboratory; W911NF2120128 Army Research Office; CMMI-2240407 National Science Foundation; CMMI-1922206 National Science Foundation
  • Entry Date(s): Date Created: 20230329 Date Completed: 20230331 Latest Revision: 20230620
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -