Zum Hauptinhalt springen

Therapeutic Targets and Prognostic Biomarkers Among CXC Chemokines in Pancreatic Ductal Adenocarcinoma Microenvironment.

Yin, Z ; Chen, S
In: Pancreas, Jg. 51 (2022-10-01), Heft 9, S. 1235-1247
academicJournal

Titel:
Therapeutic Targets and Prognostic Biomarkers Among CXC Chemokines in Pancreatic Ductal Adenocarcinoma Microenvironment.
Autor/in / Beteiligte Person: Yin, Z ; Chen, S
Zeitschrift: Pancreas, Jg. 51 (2022-10-01), Heft 9, S. 1235-1247
Veröffentlichung: Hagerstown, MD : Lippincott Williams & Wilkins ; <i>Original Publication</i>: [New York, N.Y.] : Raven Press, [c1986-, 2022
Medientyp: academicJournal
ISSN: 1536-4828 (electronic)
DOI: 10.1097/MPA.0000000000002178
Schlagwort:
  • Humans
  • Chemokines, CXC genetics
  • Prognosis
  • Receptors, Cytokine
  • Biomarkers, Tumor genetics
  • Tumor Microenvironment
  • rho-Associated Kinases
  • Pancreatic Neoplasms
  • Pancreatic Neoplasms pathology
  • Carcinoma, Pancreatic Ductal pathology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Pancreas] 2022 Oct 01; Vol. 51 (9), pp. 1235-1247.
  • MeSH Terms: Pancreatic Neoplasms* / pathology ; Carcinoma, Pancreatic Ductal* / pathology ; Humans ; Chemokines, CXC / genetics ; Prognosis ; Receptors, Cytokine ; Biomarkers, Tumor / genetics ; Tumor Microenvironment ; rho-Associated Kinases ; Pancreatic Neoplasms
  • References: Mizrahi JD, Surana R, Valle JW, et al. Pancreatic cancer. Lancet . 2020;395:2008–2020. ; Arias-Pinilla GA, Modjtahedi H. Therapeutic application of monoclonal antibodies in pancreatic cancer: advances, challenges and future opportunities. Cancers (Basel) . 2021;13:1781. ; The Surveillance, Epidemiology, and End Results (SEER) Program. SEER Incidence Data, 1975–2018. Available at: https://seer.cancer.gov . Assessed March 8, 2021). ; Strobel O, Neoptolemos J, Jäger D, et al. Optimizing the outcomes of pancreatic cancer surgery. Nat Rev Clin Oncol . 2019;16:11–26. ; Ozga AJ, Chow MT, Luster AD. Chemokines and the immune response to cancer. Immunity . 2021;54:859–874. ; Yeo ECF, Brown MP, Gargett T, et al. The role of cytokines and chemokines in shaping the immune microenvironment of glioblastoma: implications for immunotherapy. Cell . 2021;10:607. ; Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol . 2017;17:559–572. ; Mollica Poeta V, Massara M, Capucetti A, et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy. Front Immunol . 2019;10:379. ; Korbecki J, Kojder K, Kapczuk P, et al. The effect of hypoxia on the expression of CXC chemokines and CXC chemokine receptors—a review of literature. Int J Mol Sci . 2021;22:843. ; Vandercappellen J, Van Damme J, Struyf S. The role of CXC chemokines and their receptors in cancer. Cancer Lett . 2008;267:226–244. ; Lin C, He H, Liu H, et al. Tumour-associated macrophages-derived CXCL8 determines immune evasion through autonomous PD-L1 expression in gastric cancer. Gut . 2019;68:1764–1773. ; Fukuda Y, Asaoka T, Eguchi H, et al. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in intrahepatic cholangiocarcinoma. Cancer Sci . 2020;111:323–333. ; Karin N, Razon H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine . 2018;109:24–28. ; Gao Q, Wang S, Chen X, et al. Cancer-cell–secreted CXCL11 promoted CD8+ T cells infiltration through docetaxel-induced-release of HMGB1 in NSCLC. J Immunother Cancer . 2019;7:42. ; Yin Z, Huang J, Ma T, et al. Macrophages activating chemokine (C-X-C motif) ligand 8/miR-17 cluster modulate hepatocellular carcinoma cell growth and metastasis. Am J Transl Res . 2017;9:2403–2411. ; Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res . 2017;45:W98–W102. ; Rhodes DR, Yu J, Shanker K, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia . 2004;6:1–6. ; Chandrashekar DS, Bashel B, Balasubramanya SAH, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia . 2017;19:649–658. ; Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal . 2013;6:pl1. ; Warde-Farley D, Donaldson SL, Comes O, et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res . 2010;38:W214–W220. ; Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res . 2019;47:D607–D613. ; Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc . 2009;4:44–57. ; Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun . 2019;10:1523. ; Buchholz M, Braun M, Heidenblut A, et al. Transcriptome analysis of microdissected pancreatic intraepithelial neoplastic lesions. Oncogene . 2005;24:6626–6636. ; Han H, Cho JW, Lee S, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res . 2018;46:D380–D386. ; Li T, Fan J, Wang B, et al. TIMER: a Web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res . 2017;77:e108–e110. ; Pei H, Li L, Fridley BL, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt. Cancer Cell . 2009;16:259–266. ; Badea L, Herlea V, Dima SO, et al. Combined gene expression analysis of whole-tissue and microdissected pancreatic ductal adenocarcinoma identifies genes specifically overexpressed in tumor epithelia. Hepatogastroenterology . 2008;55:2016–2027. ; Logsdon CD, Simeone DM, Binkley C, et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res . 2003;63:2649–2657. ; Ishikawa M, Yoshida K, Yamashita Y, et al. Experimental trial for diagnosis of pancreatic ductal carcinoma based on gene expression profiles of pancreatic ductal cells. Cancer Sci . 2005;96:387–393. ; Segara D, Biankin AV, Kench JG, et al. Expression of HOXB2, a retinoic acid signaling target in pancreatic cancer and pancreatic intraepithelial neoplasia. Clin Cancer Res . 2005;11:3587–3596. ; Grützmann R, Pilarsky C, Ammerpohl O, et al. Gene expression profiling of microdissected pancreatic ductal carcinomas using high-density DNA microarrays. Neoplasia . 2004;6:611–622. ; Iacobuzio-Donahue CA, Maitra A, Olsen M, et al. Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microarrays. Am J Pathol . 2003;162:1151–1162. ; Rossi JF, Lu ZY, Massart C, et al. Dynamic immune/inflammation precision medicine: the good and the bad inflammation in infection and cancer. Front Immunol . 2021;12:595722. ; Nam GH, Choi Y, Kim GB, et al. Emerging prospects of exosomes for cancer treatment: from conventional therapy to immunotherapy. Adv Mater . 2020;32:e2002440. ; Karin N. Chemokines and cancer: new immune checkpoints for cancer therapy. Curr Opin Immunol . 2018;51:140–145. ; Archer M, Dogra N, Kyprianou N. Inflammation as a driver of prostate cancer metastasis and therapeutic resistance. Cancers (Basel) . 2020;12:2984. ; Hill M, Segovia M, Russo S, et al. The paradoxical roles of inflammation during PD-1 blockade in cancer. Trends Immunol . 2020;41:982–993. ; Qu X, Tang Y, Hua S. Immunological approaches towards cancer and inflammation: a cross talk. Front Immunol . 2018;9:563. ; Lundgren S, Elebro J, Heby M, et al. Quantitative, qualitative and spatial analysis of lymphocyte infiltration in periampullary and pancreatic adenocarcinoma. Int J Cancer . 2020;146:3461–3473. ; Bockorny B, Semenisty V, Macarulla T, et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med . 2020;26:878–885. ; Westrich JA, Vermeer DW, Colbert PL, et al. The multifarious roles of the chemokine CXCL14 in cancer progression and immune responses. Mol Carcinog . 2020;59:794–806. ; Allaoui R, Bergenfelz C, Mohlin S, et al. Cancer-associated fibroblast-secreted CXCL16 attracts monocytes to promote stroma activation in triple-negative breast cancers. Nat Commun . 2016;7:13050. ; Kim MJ, Sun HJ, Song YS, et al. CXCL16 positively correlated with M2-macrophage infiltration, enhanced angiogenesis, and poor prognosis in thyroid cancer. Sci Rep . 2019;9:13288. ; MacGregor HL, Garcia-Batres C, Sayad A, et al. Tumor cell expression of B7–H4 correlates with higher frequencies of tumor-infiltrating APCs and higher CXCL17 expression in human epithelial ovarian cancer. Oncoimmunology . 2019;8:e1665460.
  • Substance Nomenclature: 0 (Chemokines, CXC) ; 0 (Receptors, Cytokine) ; 0 (Biomarkers, Tumor) ; EC 2.7.11.1 (ROCK1 protein, human) ; EC 2.7.11.1 (rho-Associated Kinases)
  • Entry Date(s): Date Created: 20230420 Date Completed: 20230424 Latest Revision: 20231213
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -