Zum Hauptinhalt springen

Regulation of the pro-inflammatory G protein-coupled receptor GPR84.

Marsango, S ; Milligan, G
In: British journal of pharmacology, Jg. 181 (2024-05-01), Heft 10, S. 1500-1508
Online academicJournal

Titel:
Regulation of the pro-inflammatory G protein-coupled receptor GPR84.
Autor/in / Beteiligte Person: Marsango, S ; Milligan, G
Link:
Zeitschrift: British journal of pharmacology, Jg. 181 (2024-05-01), Heft 10, S. 1500-1508
Veröffentlichung: London : Wiley ; <i>Original Publication</i>: London, Macmillian Journals Ltd., 2024
Medientyp: academicJournal
ISSN: 1476-5381 (electronic)
DOI: 10.1111/bph.16098
Schlagwort:
  • Arrestin metabolism
  • Macrophages metabolism
  • Phosphorylation
  • Humans
  • Receptors, G-Protein-Coupled metabolism
  • Signal Transduction
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Br J Pharmacol] 2024 May; Vol. 181 (10), pp. 1500-1508. <i>Date of Electronic Publication: </i>2023 May 11.
  • MeSH Terms: Receptors, G-Protein-Coupled* / metabolism ; Signal Transduction* ; Arrestin / metabolism ; Macrophages / metabolism ; Phosphorylation ; Humans
  • References: Al Mahmud, Z., Jenkins, L., Ulven, T., Labéguère, F., Gosmini, R., De Vos, S., Hudson, B. D., Tikhonova, I. G., & Milligan, G. (2017). Three classes of ligands each bind to distinct sites on the orphan G protein‐coupled receptor GPR84. Scientific Reports, 7(1), 17953. https://doi.org/10.1038/s41598-017-18159-3. ; Alexander, S. P. H., Christopoulos, A., Davenport, A. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Pawson, A. J., Southan, C., Davies, J. A., Abbracchio, M. P., Alexander, W., Al‐Hosaini, K., Bäck, M., Barnes, N. M., Bathgate, R., … Ye, R. D. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein‐coupled receptors. British Journal of Pharmacology, 178, S27–S156. https://doi.org/10.1111/bph.15538. ; Burns, R. N., Singh, M., Senatorov, I. S., & Moniri, N. H. (2014). Mechanisms of homologous and heterologous phosphorylation of FFA receptor 4 (GPR120): GRK6 and PKC mediate phosphorylation of Thr347, Ser350, and Ser357 in the C‐terminal tail. Biochemical Pharmacology, 87, 650–659. https://doi.org/10.1016/j.bcp.2013.12.016. ; Butcher, A. J., Bradley, S. J., Prihandoko, R., Brooke, S. M., Mogg, A., Bourgognon, J. M., Macedo‐Hatch, T., Edwards, J. M., Bottrill, A. R., Challiss, R. A., Broad, L. M., Felder, C. C., & Tobin, A. B. (2016). An antibody biosensor establishes the activation of the M1 muscarinic acetylcholine receptor during learning and memory. The Journal of Biological Chemistry, 291, 8862–8875. https://doi.org/10.1074/jbc.M115.681726. ; Butcher, A. J., Prihandoko, R., Kong, K. C., McWilliams, P., Edwards, J. M., Bottrill, A., Mistry, S., & Tobin, A. B. (2010). Differential G‐protein‐coupled receptor phosphorylation provides evidence for a signaling bar code. The Journal of Biological Chemistry, 286, 11506–11508. https://doi.org/10.1074/jbc.M110.154526. ; Calebiro, D., & Godbole, A. (2018). Internalization of G‐protein‐coupled receptors: Implication in receptor function, physiology and diseases. Best Practice & Research. Clinical Endocrinology & Metabolism, 32, 83–91. https://doi.org/10.1016/j.beem.2018.01.004. ; Calebiro, D., Nikolaev, V. O., Gagliani, M. C., de Filippis, T., Dees, C., Tacchetti, C., Persani, L., & Lohse, M. J. (2009). Persistent cAMP‐signals triggered by internalized G‐protein‐coupled receptors. PLoS Biology, 7, e1000172. https://doi.org/10.1371/journal.pbio.1000172. ; Divorty, N., Jenkins, L., Ganguly, A., Butcher, A. J., Hudson, B. D., Schulz, S., Tobin, A. B., Nicklin, S. A., & Milligan, G. (2022). Agonist‐induced phosphorylation of orthologues of the orphan receptor GPR35 functions as an activation sensor. The Journal of Biological Chemistry, 298, 101655. https://doi.org/10.1016/j.jbc.2022.101655. ; Drube, J., Haider, R. S., Matthees, E. S. F., Reichel, M., Zeiner, J., Fritzwanker, S., Ziegler, C., Barz, S., Klement, L., Filor, J., Weitzel, V., Kliewer, A., Miess‐Tanneberg, E., Kostenis, E., Schulz, S., & Hoffmann, C. (2022). GPCR kinase knockout cells reveal the impact of individual GRKs on arrestin binding and GPCR regulation. Nature Communications, 13, 540. https://doi.org/10.1038/s41467-022-28152-8. ; Ferrandon, S., Feinstein, T. N., Castro, M., Wang, B., Bouley, R., Potts, J. T., Gardella, T. J., & Vilardaga, J. P. (2009). Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nature Chemical Biology, 5, 734–742. https://doi.org/10.1038/nchembio.206. ; Fredriksson, J., Holdfeldt, A., Mårtensson, J., Björkman, L., Møller, T. C., Müllers, E., Dahlgren, C., Sundqvist, M., & Forsman, H. (2022). GRK2 selectively attenuates the neutrophil NADPH‐oxidase response triggered by β‐arrestin recruiting GPR84 agonists. Biochimica et Biophysica Acta, Molecular Cell Research, 1869(7), 119262. https://doi.org/10.1016/j.bbamcr.2022.119262. ; Gagnon, L., Leduc, M., Thibodeau, J. F., Zhang, M. Z., Grouix, B., Sarra‐Bournet, F., Gagnon, W., Hince, K., Tremblay, M., Geerts, L., Kennedy, C. R. J., Hebert, R. L., Gutsol, A., Holterman, C. E., Kamto, E., Gervais, L., Ouboudinar, J., Richard, J., Felton, A., … Laurin, P. (2018). A newly discovered Antifibrotic pathway regulated by two fatty acid receptors: GPR40 and GPR84. The American Journal of Pathology, 188(5), 1132–1148. https://doi.org/10.1016/j.ajpath.2018.01.009. ; Gaidarov, I., Anthony, T., Gatlin, J., Chen, X., Mills, D., Solomon, M., Han, S., Semple, G., & Unett, D. J. (2018). Embelin and its derivatives unravel the signaling, proinflammatory and antiatherogenic properties of GPR84 receptor. Pharmacological Research, 131, 185–198. https://doi.org/10.1016/j.phrs.2018.02.021. ; Gurevich, V. V., & Gurevich, E. V. (2019). GPCR signaling regulation: The role of GRKs and Arrestins. Frontiers in Pharmacology, 10, 125. https://doi.org/10.3389/fphar.2019.00125. ; Haider, R. S., Matthees, E. S. F., Drube, J., Reichel, M., Zabel, U., Inoue, A., Chevigné, A., Krasel, C., Deupi, X., & Hoffmann, C. (2022). β‐arrestin1 and 2 exhibit distinct phosphorylation‐dependent conformations when coupling to the same GPCR in living cells. Nature Communications, 13, 5638. https://doi.org/10.1038/s41467-022-33307-8. ; Jenkins, L., Marsango, S., Mancini, S., Mahmud, Z. A., Morrison, A., McElroy, S. P., Bennett, K. A., Barnes, M., Tobin, A. B., Tikhonova, I. G., & Milligan, G. (2021). Discovery and characterization of novel antagonists of the Proinflammatory orphan receptor GPR84. ACS Pharmacology & Translational Science, 4, 1598–1613. https://doi.org/10.1021/acsptsci.1c00151. ; Kaspersen, M. H., Jenkins, L., Dunlop, J., Milligan, G., & Ulven, T. (2017). Succinct synthesis of saturated hydroxy fatty acids and in vitro evaluation of all hydroxylauric acids on FFA1, FFA4 and GPR84. Medchemcomm, 8, 1360–1365. https://doi.org/10.1039/c7md00130d. ; Kaya, A. I., Perry, N. A., Gurevich, V. V., & Iverson, T. M. (2020). Phosphorylation barcode‐dependent signal bias of the dopamine D1 receptor. Proceedings of the National Academy of Sciences of the United States of America, 117, 14139–14149. https://doi.org/10.1073/pnas.1918736117. ; Kenakin, T. (1995). Agonist‐receptor efficacy. II. Agonist trafficking of receptor signals. Trends in Pharmacological Sciences, 16, 232–238. https://doi.org/10.1016/S0165-6147(00)89032-X. ; Kenakin, T., & Christopoulos, A. (2013). Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nature Reviews. Drug Discovery, 12(205), 205–216. https://doi.org/10.1038/nrd3954. ; Khalil, N., Manganas, H., Ryerson, C. J., Shapera, S., Cantin, A. M., Hernandez, P., Turcotte, E. E., Parker, J. M., Moran, J. E., Albert, G. R., Sawtell, R., Hagerimana, A., Laurin, P., Gagnon, L., Cesari, F., & Kolb, M. (2019). Phase 2 clinical trial of PBI‐4050 in patients with idiopathic pulmonary fibrosis. The European Respiratory Journal, 53(3), 1800663. https://doi.org/10.1183/13993003.00663-2018. ; Komolov, K. E., & Benovic, J. L. (2017). G protein‐coupled receptor kinases: Past, present and future. Cellular Signalling, 41, 17–24. https://doi.org/10.1016/j.cellsig.2017.07.004. ; Köse, M., Pillaiyar, T., Namasivayam, V., De Filippo, E., Sylvester, K., Ulven, T., von Kügelgen, I., & Müller, C. E. (2020). An agonist Radioligand for the Proinflammatory lipid‐activated G protein‐coupled receptor GPR84 providing structural insights. Journal of Medicinal Chemistry, 63(5), 2391–2410. https://doi.org/10.1021/acs.jmedchem.9b01339. ; Labeguere, F., Alvey, L., Newsome, G., Saniere, L., & Fletcher, S. (2014). Novel dihydropyrimidinoisoquinolinones and pharmaceutical compositions thereof for the treatment of inflammatory disorders. WO 2013/092791A1. ; Labéguère, F., Dupont, S., Alvey, L., Soulas, F., Newsome, G., Tirera, A., Quenehen, V., Mai, T. T. T., Deprez, P., Blanqué, R., Oste, L., Le Tallec, S., De Vos, S., Hagers, A., Vandevelde, A., Nelles, L., Vandervoort, N., Conrath, K., Christophe, T., … Gosmini, R. (2020). Discovery of 9‐Cyclopropylethynyl‐2‐((S)‐1‐[1,4]dioxan‐2‐ylmethoxy)‐6,7‐dihydropyrimido[6,1‐a]isoquinolin‐4‐one (GLPG1205), a unique GPR84 negative allosteric modulator undergoing evaluation in a phase II clinical trial. Journal of Medicinal Chemistry, 63, 13526–13545. https://doi.org/10.1021/acs.jmedchem.0c00272. ; Liu, Y., Zhang, Q., Chen, L. H., Yang, H., Lu, W., Xie, X., & Nan, F. J. (2016). Design and synthesis of 2‐Alkylpyrimidine‐4,6‐diol and 6‐Alkylpyridine‐2,4‐diol as potent GPR84 agonists. ACS Medicinal Chemistry Letters, 7(6), 579–583. https://doi.org/10.1021/acsmedchemlett.6b00025. ; Lucy, D., Purvis, G. S. D., Zeboudj, L., Chatzopoulou, M., Recio, C., Bataille, C. J. R., Wynne, G. M., Greaves, D. R., & Russell, A. J. (2019). A biased agonist at Immunometabolic receptor GPR84 causes distinct functional effects in macrophages. ACS Chemical Biology, 14(9), 2055–2064. https://doi.org/10.1021/acschembio.9b00533. ; Luscombe, V. B., Lucy, D., Bataille, C. J. R., Russell, A. J., & Greaves, D. R. (2020). 20 years an orphan: Is GPR84 a plausible medium‐chain fatty acid‐sensing receptor? DNA and Cell Biology, 39, 1926–1937. https://doi.org/10.1089/dna.2020.5846. ; Mancini, S. J., Mahmud, Z. A., Jenkins, L., Bolognini, D., Newman, R., Barnes, M., Edye, M. E., McMahon, S. B., Tobin, A. B., & Milligan, G. (2019). On‐target and off‐target effects of novel orthosteric and allosteric activators of GPR84. Scientific Reports, 9(1), 1861. https://doi.org/10.1038/s41598-019-38539-1. ; Marsango, S., Barki, N., Jenkins, L., Tobin, A. B., & Milligan, G. (2020). Therapeutic validation of an orphan G protein‐coupled receptor: The case of GPR84. British Journal of Pharmacology, 179, 3529–3541. https://doi.org/10.1111/bph.15248. ; Marsango, S., Ward, R. J., Jenkins, L., Butcher, A. J., Al Mahmud, Z., Dwomoh, L., Nagel, F., Schulz, S., Tikhonova, I. G., Tobin, A. B., & Milligan, G. (2022). Selective phosphorylation of threonine residues defines GPR84‐arrestin interactions of biased ligands. The Journal of Biological Chemistry, 298, 101932. https://doi.org/10.1016/j.jbc.2022.101932. ; Martínez‐Morales, J. C., Teresa Romero‐Ávila, M., Reyes‐Cruz, G., & García‐Sáinz, J. A. (2021). Roles of receptor phosphorylation and Rab proteins in G protein‐coupled receptor function and trafficking. Molecular Pharmacology, 101, 144–153. https://doi.org/10.1124/molpharm.121.000429. ; Matthees, E. S. F., Haider, R. S., Hoffmann, C., & Drube, J. (2021). Differential regulation of GPCRs‐are GRK expression levels the key? Frontiers in Cell and Development Biology, 9, 687489. https://doi.org/10.3389/fcell.2021.687489. ; Mikkelsen, R. B., Arora, T., Trošt, K., Dmytriyeva, O., Jensen, S. K., Meijnikman, A. S., Olofsson, L. E., Lappa, D., Aydin, Ö., Nielsen, J., Gerdes, V., Moritz, T., van de Laar, A., de Brauw, M., Nieuwdorp, M., Hjorth, S. A., Schwartz, T. W., & Bäckhed, F. (2022). Type 2 diabetes is associated with increased circulating levels of 3‐hydroxydecanoate activating GPR84 and neutrophil migration. iScience, 25, 105683. https://doi.org/10.1016/j.isci.2022.105683. ; Milligan, G., Marshall, F., Rees, S. (1996). G16 as a universal G protein adapter: Implications for agonist screening strategies. Trends in Pharmacological, 17(7), 235–237. ; Møller, T. C., Pedersen, M. F., van Senten, J. R., Seiersen, S. D., Mathiesen, J. M., Bouvier, M., & Bräuner‐Osborne, H. (2020). Dissecting the roles of GRK2 and GRK3 in μ‐opioid receptor internalization and β‐arrestin2 recruitment using CRISPR/Cas9‐edited HEK293 cells. Scientific Reports, 10, 17395. https://doi.org/10.1038/s41598-020-73674-0. ; Montgomery, M. K., Osborne, B., Brandon, A. E., O'Reilly, L., Fiveash, C. E., Brown, S. H. J., Wilkins, B. P., Samsudeen, A., Yu, J., Devanapalli, B., Hertzog, A., Tolun, A. A., Kavanagh, T., Cooper, A. A., Mitchell, T. W., Biden, T. J., Smith, N. J., Cooney, G. J., & Turner, N. (2019). Regulation of mitochondrial metabolism in murine skeletal muscle by the medium‐chain fatty acid receptor Gpr84. The FASEB Journal, 33(11), 12264–12276. https://doi.org/10.1096/fj.201900234R. ; Muredda, L., Kepczynska, M. A., Zaibi, M. S., Alomar, S. Y., & Trayhurn, P. (2018). IL‐1beta and TNFalpha inhibit GPR120 (FFAR4) and stimulate GPR84 (EX33) and GPR41 (FFAR3) fatty acid receptor expression in human adipocytes: Implications for the anti‐inflammatory action of n‐3 fatty acids. Archives of Physiology and Biochemistry, 124(2), 97–108. https://doi.org/10.1080/13813455.2017.1364774. ; Nagasaki, H., Kondo, T., Fuchigami, M., Hashimoto, H., Sugimura, Y., Ozaki, N., Arima, H., Ota, A., Oiso, Y., & Hamada, Y. (2012). Inflammatory changes in adipose tissue enhance expression of GPR84, a medium‐chain fatty acid receptor: TNFalpha enhances GPR84 expression in adipocytes. FEBS Letters, 586(4), 368–372. https://doi.org/10.1016/j.febslet.2012.01.001. ; Nikaido, Y., Koyama, Y., Yoshikawa, Y., Furuya, T., & Takeda, S. (2015). Mutation analysis and molecular modeling for the investigation of ligand‐binding modes of GPR84. Journal of Biochemistry, 157(5), 311–320. https://doi.org/10.1093/jb/mvu075. ; Ohue‐Kitano, R., Nonaka, H., Nishida, A., Masujima, Y., Takahashi, D., Ikeda, T., Uwamizu, A., Tanaka, M., Kohjima, M., Igarashi, M., Katoh, H., Tanaka, T., Inoue, A., Suganami, T., Hase, K., Ogawa, Y., Aoki, J., & Kimura, I. (2023). Medium‐chain fatty acids suppress lipotoxicity‐induced hepatic fibrosis via the immunomodulating receptor GPR84. JCI Insight, 8, e165469. https://doi.org/10.1172/jci.insight.165469. ; Parker, J., Sawtell, R., Gagnon, L., Hagerimania, A., Laurin, P., Kolb, M., & Moran, J. (2017). PBI‐4050 is safe and well tolerated and shows evidence of benefit in idiopathic pulmonary fibrosis. AJRCCM, 195, A7606. ; Peters, A., Rabe, P., Liebing, A. D., Krumbholz, P., Nordström, A., Jäger, E., Kraft, R., & Stäubert, C. (2022). Hydroxycarboxylic acid receptor 3 and GPR84 ‐ Two metabolite‐sensing G protein‐coupled receptors with opposing functions in innate immune cells. Pharmacological Research, 176, 106047. https://doi.org/10.1016/j.phrs.2021.106047. ; Pillaiyar, T., Köse, M., Sylvester, K., Weighardt, H., Thimm, D., Borges, G., Förster, I., von Kügelgen, I., & Müller, C. E. (2017). Diindolylmethane derivatives: Potent agonists of the Immunostimulatory orphan G protein‐coupled receptor GPR84. Journal of Medicinal Chemistry, 60(9), 3636–3655. https://doi.org/10.1021/acs.jmedchem.6b01593. ; Prihandoko, R., Alvarez‐Curto, E., Hudson, B. D., Butcher, A. J., Ulven, T., Miller, A. M., Tobin, A. B., & Milligan, G. (2016). Distinct phosphorylation clusters determine the signaling outcome of free fatty acid receptor 4/G protein‐coupled receptor 120. Molecular Pharmacology, 89, 505–520. https://doi.org/10.1124/mol.115.101949. ; Prihandoko, R., Bradley, S. J., Tobin, A. B., & Butcher, A. J. (2015). Determination of GPCR phosphorylation status: Establishing a phosphorylation barcode. Current Protocols in Pharmacology, 69, 2. https://doi.org/10.1002/0471141755.ph0213s69. ; Puengel, T., De Vos, S., Hundertmark, J., Kohlhepp, M., Guldiken, N., Pujuguet, P., Auberval, M., Marsais, F., Shoji, K. F., Saniere, L., Trautwein, C., Luedde, T., Strnad, P., Brys, R., Clement‐Lacroix, P., & Tacke, F. (2020). The medium‐chain fatty acid receptor GPR84 mediates myeloid cell infiltration promoting steatohepatitis and fibrosis. Journal of Clinical Medicine, 9(4), 1140. https://doi.org/10.3390/jcm9041140. ; Recio, C., Lucy, D., Purvis, G. S. D., Iveson, P., Zeboudj, L., Iqbal, A. J., Lin, D., O'Callaghan, C., Davison, L., Griesbach, E., Russell, A. J., Wynne, G. M., Dib, L., Monaco, C., & Greaves, D. R. (2018). Activation of the immune‐metabolic receptor GPR84 enhances inflammation and phagocytosis in macrophages. Frontiers in Immunology, 9, 1419. https://doi.org/10.3389/fimmu.2018.01419. ; Schulze, A. S., Kleinau, G., Krakowsky, R., Rochmann, D., Das, R., Worth, C. L., Krumbholz, P., Scheerer, P., & Stäubert, C. (2022). Evolutionary analyses reveal immune cell receptor GPR84 as a conserved receptor for bacteria‐derived molecules. iScience, 25, 105087. https://doi.org/10.1016/j.isci.2022.105087. ; Southern, C., Cook, J. M., Neetoo‐Isseljee, Z., Taylor, D. L., Kettleborough, C. A., Merritt, A., Bassoni, D. L., Raab, W. J., Quinn, E., Wehrman, T. S., Davenport, A. P., Brown, A. J., Green, A., Wigglesworth, M. J., & Rees, S. (2013). Screening β‐arrestin recruitment for the identification of natural ligands for orphan G‐protein‐coupled receptors. Journal of Biomolecular Screening, 18(5), 599–609. https://doi.org/10.1177/1087057113475480. ; Strambu, I. R., Seemayer, C. A., Fagard, L. M. A., Ford, P. A., Van der Aa, T. A. K., de Haas‐Amatsaleh, A. A., Modgill, V., Santermans, E., Sondag, E. N., Helmer, E. G., Maher, T. M., Costabel, U., & Cottin, V. (2022). GLPG1205 for idiopathic pulmonary fibrosis: A phase 2 randomised placebo‐controlled trial. The European Respiratory Journal, 3, 2201794. https://doi.org/10.1183/13993003.01794-2022. ; Suzuki, M., Takaishi, S., Nagasaki, M., Onozawa, Y., Iino, I., Maeda, H., Komai, T., & Oda, T. (2013). Medium‐chain fatty acid‐sensing receptor, GPR84, is a Proinflammatory receptor. The Journal of Biological Chemistry, 288(15), 10684–10691. https://doi.org/10.1074/jbc.M112.420042. ; Tobin, A. B., Butcher, A. J., & Kong, K. C. (2008). Location, location, location…Site‐specific GPCR phosphorylation offers a mechanism for cell‐type‐specific signalling. Trends in Pharmacological Sciences, 29, 413–420. https://doi.org/10.1016/j.tips.2008.05.006. ; Vermeire, S., Reinisch, W., Wasko‐Czopnik, D., Van Kaem, T., Desrivot, J., Vanhoutte, F., & Beetens, J. (2017). Efficacy and safety of GLPG1205, a GPR84 antagonist, in ulcerative colitis: Multi‐Centre proof‐of‐concept study. Journal of Crohn's and Colitis, 11(suppl_1), 390–391. https://doi.org/10.1093/ecco-jcc/jjx002.734. ; Wang, J., Wu, X., Simonavicius, N., Tian, H., & Ling, L. (2006). Medium‐chain fatty acids as ligands for orphan G protein‐coupled receptor GPR84. The Journal of Biological Chemistry, 281(45), 34457–34464. https://doi.org/10.1074/jbc.M608019200. ; Wei, L., Tokizane, K., Konishi, H., Yu, H. R., & Kiyama, H. (2017). Agonists for G‐protein‐coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro‐inflammatory responses in microglia. Journal of Neuroinflammation, 14(1), 198. https://doi.org/10.1186/s12974-017-0970-y. ; Yang, Z., Yang, F., Zhang, D., Liu, Z., Lin, A., Liu, C., Xiao, P., Yu, X., & Sun, J. P. (2017). Phosphorylation of G protein‐coupled receptors: From the barcode hypothesis to the flute model. Molecular Pharmacology, 92, 201–210. https://doi.org/10.1124/mol.116.107839. ; Zhang, Q., Chen, L. H., Yang, H., Fang, Y. C., Wang, S. W., Wang, M., Yuan, Q. T., Wu, W., Zhang, Y. M., Liu, Z. J., Nan, F. J., & Xie, X. (2022). GPR84 signaling promotes intestinal mucosal inflammation via enhancing NLRP3 inflammasome activation in macrophages. Acta Pharmacologica Sinica, 43, 2042–2054. https://doi.org/10.1038/s41401-021-00825-y. ; Zhang, Q., Yang, H., Li, J., & Xie, X. (2016). Discovery and characterization of a novel small‐molecule agonist for medium‐chain free fatty acid receptor G protein‐coupled receptor 84. The Journal of Pharmacology and Experimental Therapeutics, 357(2), 337–344. https://doi.org/10.1124/jpet.116.232033.
  • Grant Information: BB/T000562/1 Biotechnology and Biosciences Research Council
  • Contributed Indexing: Keywords: GPCR phosphorylation; GPCR regulation; GPR84; GRKs
  • Substance Nomenclature: 0 (Arrestin) ; 0 (GPR84 protein, human) ; 0 (Receptors, G-Protein-Coupled)
  • Entry Date(s): Date Created: 20230421 Date Completed: 20240418 Latest Revision: 20240422
  • Update Code: 20240423

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -