Zum Hauptinhalt springen

Individual and combined effects of α-amylase, xylanase, and cellulase on the breadmaking and nutritional properties of steamed bun enriched in wheat bran.

Liu, W ; Brennan, M ; et al.
In: Journal of food science, Jg. 88 (2023-08-01), Heft 8, S. 3228-3238
Online academicJournal

Titel:
Individual and combined effects of α-amylase, xylanase, and cellulase on the breadmaking and nutritional properties of steamed bun enriched in wheat bran.
Autor/in / Beteiligte Person: Liu, W ; Brennan, M ; Brennan, C ; You, L ; Wu, L
Link:
Zeitschrift: Journal of food science, Jg. 88 (2023-08-01), Heft 8, S. 3228-3238
Veröffentlichung: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists ; <i>Original Publication</i>: Champaign, Ill. Institute of Food Technologists, 2023
Medientyp: academicJournal
ISSN: 1750-3841 (electronic)
DOI: 10.1111/1750-3841.16665
Schlagwort:
  • Dietary Fiber analysis
  • Carbohydrates
  • Nutritive Value
  • Steam
  • alpha-Amylases
  • Cellulase
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Food Sci] 2023 Aug; Vol. 88 (8), pp. 3228-3238. <i>Date of Electronic Publication: </i>2023 Jun 16.
  • MeSH Terms: alpha-Amylases* ; Cellulase* ; Dietary Fiber / analysis ; Carbohydrates ; Nutritive Value ; Steam
  • References: AACC. 2000. Approved methods of the American Association of Cereal Chemists (10th ed.). AACC. ; Altuna, L., Ribotta, P. D., & Tadini, C. C. (2016). Effect of a combination of enzymes on the fundamental rheological behavior of bread dough enriched with resistant starch. LWT, 73, 267-273. https://doi.org/10.1016/j.lwt.2016.06.010. ; Barrera, G. N., Tadini, C. C., León, A. E., & Ribotta, P. D. (2016). Use of alpha-amylase and amyloglucosidase combinations to minimize the bread quality problems caused by high levels of damaged starch. Journal of Food Science and Technology, 53(10), 3675-3684. https://doi.org/10.1007/s13197-016-2337-2. ; Brennan, M. A., Derbyshire, E. J., Brennan, C. S., & Tiwari, B. K. (2012). Impact of dietary fibre-enriched ready-to-eat extruded snacks on the postprandial glycaemic response of non-diabetic patients. Molecular Nutrition & Food Research, 56(5), 834-7. ; Bueno, M. M., Thys, R., & Rodrigues, R. C. (2016). Microbial enzymes as substitutes of chemical additives in baking wheat flour-Part I: Individual effects of nine enzymes on flour dough rheology. Food & Bioprocess Technology, 9(12), 2012-2023. ; Caballero, P. A., Gomez, M., & Rosell, C. M. (2007). Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 81(1), 42-53. ; Ciudad-Mulero, M., Fernández-Ruiz, V., Matallana-González, M. C., & Morales, P. (2019). Chapter Two-Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. In I. C. F. R. Ferreira, & L. Barros (Eds.), Functional food ingredients from plants (Vol. 90, pp. 83-134). Academic Press. https://doi.org/10.1016/bs.afnr.2019.02.002. ; Cripwell, R. A., Zyl, W. H., & Viljoen-Bloom, M. (2021). Fungal biotechnology: Fungal amylases and their applications. In Ó. Zaragoza, & A. Casadevall (Eds.), Encyclopedia of mycology (pp. 326-336). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.21082-0. ; Dahiya, S., Bajaj, B. K., Kumar, A., Tiwari, S. K., & Singh, B. (2020). A review on biotechnological potential of multifarious enzymes in bread making. Process Biochemistry, 99, 290-306. https://doi.org/10.1016/j.procbio.2020.09.002. ; Dahiya, S., & Singh, B. (2019). Microbial xylanases in bread making. In L. Melton, F. Shahidi, & P. Varelis (Eds.), Encyclopedia of food chemistry (pp. 140-149). Academic Press. https://doi.org/10.1016/B978-0-08-100596-5.21644-2. ; Dewaest, M., Villemejane, C., Berland, S., Neron, S., Clement, J., Verel, A., & Michon, C. (2018). Effect of crumb cellular structure characterized by image analysis on cake softness. Journal of Texture Studies, 49(3), 328-338. https://doi.org/10.1111/jtxs.12303. ; Ebling, C. D., Thys, R. C. S., & Klein, M. P. (2022). Influence of amyloglucosidase, glucose oxidase, and transglutaminase on the technological quality of gluten-free bread. Cereal Chemistry, 99(4), 802-810. https://doi.org/10.1002/cche.10537. ; Han, W., Ma, S., Li, L., Zheng, X., & Wang, X. (2019). Impact of wheat bran dietary fiber on gluten and gluten-starch microstructure formation in dough. Food Hydrocolloids, 95, 292-297. https://doi.org/10.1016/j.foodhyd.2018.10.033. ; He, Y., Wang, B., Wen, L., Wang, F., Yu, H., Chen, D., Su, X., & Zhang, C. (2022). Effects of dietary fiber on human health. Food Science and Human Wellness, 11(1), 1-10. https://doi.org/10.1016/j.fshw.2021.07.001. ; Katina, K., Salmenkallio-Marttila, M., Partanen, R., Forssell, P., & Autio, K. (2006). Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT - Food Science and Technology, 39(5), 479-491. https://doi.org/10.1016/j.lwt.2005.03.013. ; Kumar, R., & Wyman, C. (2009). Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresource Technology: Biomass, Bioenergy, Biowastes, Conversion Technologies, Biotransformations, Production Technologies, 18, 100. ; Lin, S., Jin, X., Gao, J., Qiu, Z., Ying, J., Wang, Y., Dong, Z., & Zhou, W. (2022). Impact of wheat bran micronization on dough properties and bread quality: Part II - Quality, antioxidant and nutritional properties of bread. Food Chemistry, 396, 133631. https://doi.org/10.1016/j.foodchem.2022.133631. ; Liu, W., Brennan, M. A., Serventi, L., & Brennan, C. S. (2017a). Effect of cellulase, xylanase and α-amylase combinations on the rheological properties of Chinese steamed bread dough enriched in wheat bran. Food Chemistry, 234, 93-102. https://doi.org/10.1016/j.foodchem.2017.04.160. ; Liu, W., Brennan, M. A., Serventi, L., & Brennan, C. S. (2017b). Effect of wheat bran on dough rheology and final quality of Chinese steamed bread. Cereal Chemistry Journal, 94(3), 581-587. https://doi.org/10.1094/CCHEM-09-16-0234-R. ; Ma, S., Wang, Z., Liu, H., Li, L., Zheng, X., Tian, X., Sun, B., & Wang, X. (2022). Supplementation of wheat flour products with wheat bran dietary fiber: Purpose, mechanisms, and challenges. Trends in Food Science & Technology, 123, 281-289. https://doi.org/10.1016/j.tifs.2022.03.012. ; Monro, J. A., Mishra, S., & Venn, B. (2010). Baselines representing blood glucose clearance improve in vitro prediction of the glycaemic impact of customarily consumed food quantities. British Journal of Nutrition, 103(02), 295-305. ; Park, E. Y., Fuerst, E. P., & Baik, B.-K. (2019). Effect of bran hydration with enzymes on functional properties of flour-bran blends. Cereal Chemistry, 96(2), 273-282. https://doi.org/10.1002/cche.10119. ; Rebholz, G. F., Sebald, K., Dirndorfer, S., Dawid, C., Hofmann, T., & Scherf, K. A. (2021). Impact of exogenous α-amylases on sugar formation in straight dough wheat bread. European Food Research and Technology, 247(3), 695-706. ; Saini, P., Islam, M., Das, R., Shekhar, S., Sinha, A. S. K., & Prasad, K. (2022). Wheat bran as potential source of dietary fiber: Prospects and challenges. Journal of Food Composition and Analysis, 116, 105030. https://doi.org/10.1016/j.jfca.2022.105030. ; Sanz-Penella, J. M., Laparra, J. M., & Haros, M. (2014). Impact of α-amylase during breadmaking on in vitro kinetics of starch hydrolysis and glycaemic index of enriched bread with bran. Plant Foods for Human Nutrition, 69(3), 216-221. https://doi.org/10.1007/s11130-014-0436-7. ; Schoenlechner, R., Szatmari, M., Bagdi, A., & Tömösközi, S. (2013). Optimisation of bread quality produced from wheat and proso millet (Panicum miliaceum L.) by adding emulsifiers, transglutaminase and xylanase. LWT - Food Science and Technology, 51(1), 361-366. https://doi.org/10.1016/j.lwt.2012.10.020. ; Serventi, L., Jensen, S., Skibsted, L. H., & Kidmose, U. (2016). Addition of enzymes to improve sensory quality of composite wheat-cassava bread. European Food Research and Technology, 242(8), 1245-1252. https://doi.org/10.1007/s00217-015-2628-2. ; Ghoshal, G., Shivhare, U. S., & Banerjee, U. C. (2013). Effect of xylanase on quality attributes of Whole-wheat bread. Journal of Food Quality, 36(3), 172-180. ; Singhal, G., Bhagyawant, S. S., & Srivastava, N. (2021). Chapter 3-Cellulases through thermophilic microorganisms: Production, characterization, and applications. In D. K. Tuli, & A. Kuila (Eds.), Current status and future scope of microbial Cellulases (pp. 39-57). Elsevier. https://doi.org/10.1016/B978-0-12-821882-2.00005-3. ; Steffolani, M. E, Ribotta, P. D., Pérez, G. T., & León, A. E. (2012). Combinations of glucose oxidase, α-amylase and xylanase affect dough properties and bread quality. International Journal of Food Science & Technology, 47(3), 525-534. https://doi.org/10.1111/j.1365-2621.2011.02873.x. ; Stojceska, V., & Ainsworth, P. (2008). The effect of different enzymes on the quality of high-fibre enriched brewer's spent grain breads. Food Chemistry, 110(4), 865-872. https://doi.org/10.1016/j.foodchem.2008.02.074. ; Tebben, L., Chen, G., Tilley, M., & Li, Y. (2020). Individual effects of enzymes and vital wheat gluten on whole wheat dough and bread properties. Journal of Food Science, 85(12), 4201-4208. https://doi.org/10.1111/1750-3841.15517. ; Wang, Z., Ma, S., Li, L., & Huang, J. (2022). Synergistic fermentation of Lactobacillus plantarum and Saccharomyces cerevisiae to improve the quality of wheat bran dietary fiber-steamed bread. Food Chemistry: X, 16, 100528. https://doi.org/10.1016/j.fochx.2022.100528. ; Xue, Y., Cui, X., Zhang, Z., Zhou, T., Gao, R., Li, Y., & Ding, X. (2020). Effect of β-endoxylanase and α-arabinofuranosidase enzymatic hydrolysis on nutritional and technological properties of wheat brans. Food Chemistry, 302, 125332. https://doi.org/10.1016/j.foodchem.2019.125332. ; Yang, Y.-M., Song, H.-T., Liu, S.-H., Xiao, W.-J., & Gao, Y. (2016). Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresource Technology Biomass Bioenergy Biowastes Conversion Technologies Biotransformations Production Technologies, 219, 710-715. ; Zhang, H., Sun, S., & Ai, L. (2022). Physical barrier effects of dietary fibers on lowering starch digestibility. Current Opinion in Food Science, 48, 100940. https://doi.org/10.1016/j.cofs.2022.100940. ; Zhang, L., Boven, A. V., Mulder, J., Grandia, J., Chen, X. D., Boom, R. M., & Schutyser, M. (2019). Arabinoxylans-enriched fractions: From dry fractionation of wheat bran to the investigation on bread baking performance. Journal of Cereal Science, 87, 1-8. ; Zhang, S., Jia, X., Xu, L., Xue, Y., Pan, Q., Shen, W., & Wang, Z. (2022). Effect of extrusion and semi-solid enzymatic hydrolysis modifications on the quality of wheat bran and steamed bread containing bran. Journal of Cereal Science, 108, 103577. https://doi.org/10.1016/j.jcs.2022.103577.
  • Grant Information: cstc2019jcyj-msxmX0263 Natural Science Foundation of Chongqing City; 2256005 Natural Science Foundation of Chongqing Technology and Business University; 2256016 Natural Science Foundation of Chongqing Technology and Business University; KJQN202200836 Science and Technology Research Program of Chongqing Municipal Education Commission; KJQN202200848 Science and Technology Research Program of Chongqing Municipal Education Commission
  • Contributed Indexing: Keywords: Chinese steamed bun; cellulose; glycaemic response; xylanase; α-amylase
  • Substance Nomenclature: EC 3.2.1.1 (alpha-Amylases) ; 0 (Dietary Fiber) ; EC 3.2.1.4 (Cellulase) ; 0 (Carbohydrates) ; 0 (Steam)
  • Entry Date(s): Date Created: 20230616 Date Completed: 20230807 Latest Revision: 20230807
  • Update Code: 20240513

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -