Zum Hauptinhalt springen

Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms.

Ruvindy, R ; Barua, A ; et al.
In: ISME communications, Jg. 3 (2023-07-08), Heft 1, S. 70
Online academicJournal

Titel:
Genomic copy number variability at the genus, species and population levels impacts in situ ecological analyses of dinoflagellates and harmful algal blooms.
Autor/in / Beteiligte Person: Ruvindy, R ; Barua, A ; Bolch, CJS ; Sarowar, C ; Savela, H ; Murray, SA
Link:
Zeitschrift: ISME communications, Jg. 3 (2023-07-08), Heft 1, S. 70
Veröffentlichung: 3 2024- : Oxford : Oxford University Press ; <i>Original Publication</i>: [London] : Springer Nature on behalf of the International Society for Microbial Ecology, [2021]-, 2023
Medientyp: academicJournal
ISSN: 2730-6151 (electronic)
DOI: 10.1038/s43705-023-00274-0
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [ISME Commun] 2023 Jul 08; Vol. 3 (1), pp. 70. <i>Date of Electronic Publication: </i>2023 Jul 08.
  • References: Hardigan MA, Crisovan E, Hamilton JP, Kim J, Laimbeer P, Leisner CP, et al. Genome reduction uncovers a large dispensable genome and adaptive role for copy nmber vriation in aexually popagated Solanum tuberosum. Plant Cell. 2016;28:388–405. (PMID: 26772996479086510.1105/tpc.15.00538) ; Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, et al. Diet and the evolution of human amylase gene copy number variation. Nat Genet. 2007;39:1256–60. (PMID: 17828263237701510.1038/ng2123) ; Soppa J. Polyploidy and community structure. Nat Microbiol. 2017;2:16261. (PMID: 2812092910.1038/nmicrobiol.2016.261) ; Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, et al. Origins and functional impact of copy number variation in the human genome. Nature. 2010;464:704–12. (PMID: 1981254510.1038/nature08516) ; Zerulla K, Soppa J. Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol. 2014;5:274. (PMID: 24982654405610810.3389/fmicb.2014.00274) ; Iantorno SA, Durrant C, Khan A, Sanders MJ, Beverley SM, Warren WC, et al. Gene expression in leishmania is regulated predominantly by gene dosage. mBio. 2017;8:e01393-17. (PMID: 10.1128/mBio.01393-17) ; Gillard GB, Gronvold L, Rosaeg LL, Holen MM, Monsen O, Koop BF, et al. Comparative regulomics supports pervasive selection on gene dosage following whole genome duplication. Genome Biol. 2021;22:103. (PMID: 33849620804270610.1186/s13059-021-02323-0) ; Keeling PJ, Campo JD. Marine protists are not just big bacteria. Curr Biol. 2017;27:R541–R549. (PMID: 2858669110.1016/j.cub.2017.03.075) ; Galluzzi L, Bertozzini E, Penna A, Perini F, Garcés E, Magnani M. Analysis of rRNA gene content in the Mediterranean dinoflagellate Alexandrium catenella and Alexandrium taylori: implications for the quantitative real-time PCR-based monitoring methods. J Appl Phycol. 2010;22:1–9. (PMID: 10.1007/s10811-009-9411-3) ; Gong W, Marchetti A. Estimation of 18S gene copy number in marine eukaryotic plankton using a next-generation sequencing approach. Front Marine Sci. 2019;6:219. (PMID: 10.3389/fmars.2019.00219) ; Wang C, Zhang T, Wang Y, Katz LA, Gao F, Song W. Disentangling sources of variation in SSU rDNA sequences from single cell analyses of ciliates: impact of copy number variation and experimental error. Proc Biol Sci. 2017;284:20170425. (PMID: 287474725543213) ; Milivojevic T, Rahman SN, Raposo D, Siccha M, Kucera M, Morard R. High variability in SSU rDNA gene copy number among planktonic foraminifera revealed by single-cell qPCR. ISME Commun. 2021;1:63. (PMID: 36750661972366510.1038/s43705-021-00067-3) ; de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, et al. Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science. 2015;348:1261605. (PMID: 2599951610.1126/science.1261605) ; Thornhill DJ, Lajeunesse TC, Santos SR. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol Ecol. 2007;16:5326–40. (PMID: 1799592410.1111/j.1365-294X.2007.03576.x) ; Egge E, Bittner L, Andersen T, Audic S, de Vargas C, Edvardsen B. 454 pyrosequencing to describe microbial eukaryotic community composition, diversity and relative abundance: a test for marine haptophytes. PLoS One. 2013;8:e74371. (PMID: 24069303377197810.1371/journal.pone.0074371) ; Galluzzi L, Penna A, Bertozzini E, Vila M, Garces E, Magnani M. Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a Dinoflagellate). Appl Environ Microbiol. 2004;70:1199–206. (PMID: 1476660634887210.1128/AEM.70.2.1199-1206.2004) ; Erdner DL, Percy L, Keafer B, Lewis J, Anderson DM. A quantitative real-time PCR assay for the identification and enumeration of Alexandrium cysts in marine sediments. Deep Sea Res Part 2 Top Stud Oceanogr. 2010;57:279–87. (PMID: 284730610.1016/j.dsr2.2009.09.006) ; Prokopowich CD, Gregory TR, Crease TJ. The correlation between rDNA copy number and genome size in eukaryotes. Genome. 2003;46:48–50. (PMID: 1266979510.1139/g02-103) ; Godhe A, Asplund ME, Harnstrom K, Saravanan V, Tyagi A, Karunasagar I. Quantification of diatom and dinoflagellate biomasses in coastal marine seawater samples by real-time PCR. Appl Environ Microbiol. 2008;74:7174–82. (PMID: 18849462259292010.1128/AEM.01298-08) ; Le Bescot N, Mahé F, Audic S, Dimier C, Garet MJ, Poulain J, et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ Microbiol. 2016;18:609–26. (PMID: 2633759810.1111/1462-2920.13039) ; Lin S. Genomic understanding of dinoflagellates. Res Microbiol. 2011;162:551–69. (PMID: 2151437910.1016/j.resmic.2011.04.006) ; LaJeunesse TC, Lambert G, Andersen RA, Coffroth MA, Galbraith DW. Symbiodinium (Pyrrhophyta) genome sizes (DNA Content) are smallest among dinoflagellates. J Phycol. 2005;41:880–6. (PMID: 10.1111/j.0022-3646.2005.04231.x) ; Hackett JD, Scheetz TE, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, et al. Insights into a dinoflagellate genome through expressed sequence tag analysis. BMC Genomics. 2005;6:80. (PMID: 15921535117310410.1186/1471-2164-6-80) ; Hidalgo O, Pellicer J, Christenhusz M, Schneider H, Leitch AR, Leitch IJ. Is There an Upper Limit to Genome Size? Trends Plant Sci. 2017;22:567–73. (PMID: 2850666710.1016/j.tplants.2017.04.005) ; Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ. Genome size diversity and its impact on the evolution of land plants. Genes (Basel). 2018;9:88. (PMID: 2944388510.3390/genes9020088) ; Murray SA, Suggett DJ, Doblin MA, Kohli GS, Seymour JR, Fabris M, et al. Unravelling the functional genetics of dinoflagellates: a review of approaches and opportunities. Perspect Phycol. 2016;3:37–52. ; Bachvaroff TR, Place AR. From stop to start: tandem gene arrangement, copy number and trans-splicing sites in the dinoflagellate Amphidinium carterae. PLoS One. 2008;3:e2929. (PMID: 18698341248837210.1371/journal.pone.0002929) ; Liu H, Stephens TG, Gonzalez-Pech RA, Beltran VH, Lapeyre B, Bongaerts P, et al. Symbiodinium genomes reveal adaptive evolution of functions related to coral-dinoflagellate symbiosis. Commun Biol. 2018;1:95. (PMID: 30271976612363310.1038/s42003-018-0098-3) ; Lin S, Cheng S, Song B, Zhong X, Lin X, Li W, et al. The Symbiodinium kawagutii genome illuminates dinoflagellate gene expression and coral symbiosis. Science. 2015;350:691–4. (PMID: 2654257410.1126/science.aad0408) ; Stephens TG, Gonzalez-Pech RA, Cheng Y, Mohamed AR, Burt DW, Bhattacharya D, et al. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biol. 2020;18:56. (PMID: 32448240724577810.1186/s12915-020-00782-8) ; Slamovits CH, Keeling PJ. Widespread recycling of processed cDNAs in dinoflagellates. Curr Biol. 2008;18:R550–2. (PMID: 1860612110.1016/j.cub.2008.04.054) ; Song B, Chen S, Chen W. Dinoflagellates, a unique lineage for retrogene research. Front Microbiol. 2018;9:1556. (PMID: 30050525605039410.3389/fmicb.2018.01556) ; Goetz EJ, Greco M, Rappaport HB, Weiner AKM, Walker LM, Bowser S, et al. Foraminifera as a model of the extensive variability in genome dynamics among eukaryotes. Bioessays. 2022;44:e2100267. (PMID: 3605089310.1002/bies.202100267) ; Kouakou CRC, Poder TG. Economic impact of harmful algal blooms on human health: a systematic review. J Water Health. 2019;17:499–516. (PMID: 3131399010.2166/wh.2019.064) ; Ryderheim F, Selander E, Kiorboe T. Predator-induced defence in a dinoflagellate generates benefits without direct costs. ISME J. 2021;15:2107–16. (PMID: 33580210824549110.1038/s41396-021-00908-y) ; Hackett JD, Wisecaver JH, Brosnahan ML, Kulis DM, Anderson DM, Bhattacharya D, et al. Evolution of saxitoxin synthesis in cyanobacteria and dinoflagellates. Mol Biol Evol. 2013;30:70–8. (PMID: 2262853310.1093/molbev/mss142) ; Stuken A, Orr RJ, Kellmann R, Murray SA, Neilan BA, Jakobsen KS. Discovery of nuclear-encoded genes for the neurotoxin saxitoxin in dinoflagellates. PLoS One. 2011;6:e20096. (PMID: 21625593309722910.1371/journal.pone.0020096) ; Orr RJ, Stuken A, Murray SA, Jakobsen KS. Evolution and distribution of saxitoxin biosynthesis in dinoflagellates. Mar Drugs. 2013;11:2814–28. (PMID: 23966031376686710.3390/md11082814) ; Stuken A, Riobo P, Franco J, Jakobsen KS, Guillou L, Figueroa RI. Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains. Front Microbiol. 2015;6:404. (PMID: 25983733441645410.3389/fmicb.2015.00404) ; Geffroy S, Lechat MM, Le Gac M, Rovillon GA, Marie D, Bigeard E, et al. From the sxtA4 gene to saxitoxin production: what controls the variability among alexandrium minutum and alexandrium pacificum strains? Front Microbiol. 2021;12:613199. (PMID: 33717003794499410.3389/fmicb.2021.613199) ; Savela H, Harju K, Spoof L, Lindehoff E, Meriluoto J, Vehniainen M, et al. Quantity of the dinoflagellate sxtA4 gene and cell density correlates with paralytic shellfish toxin production in Alexandrium ostenfeldii blooms. Harmful Algae. 2016;52:1–10. (PMID: 2807346610.1016/j.hal.2015.10.018) ; Perini F, Galluzzi L, Dell’Aversano C, Iacovo ED, Tartaglione L, Ricci F, et al. SxtA and sxtG gene expression and toxin production in the Mediterranean Alexandrium minutum (Dinophyceae). Mar Drugs. 2014;12:5258–76. (PMID: 25341029421089810.3390/md12105258) ; Wiese M, Murray SA, Alvin A, Neilan BA. Gene expression and molecular evolution of sxtA4 in a saxitoxin producing dinoflagellate Alexandrium catenella. Toxicon. 2014;92:102–12. (PMID: 2530148010.1016/j.toxicon.2014.09.015) ; Murray SA, Wiese M, Stuken A, Brett S, Kellmann R, Hallegraeff G, et al. sxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters. Appl Environ Microbiol. 2011;77:7050–7. (PMID: 21841034318709710.1128/AEM.05308-11) ; Murray SA, Ruvindy R, Kohli GS, Anderson DM, Brosnahan ML. Evaluation of sxtA and rDNA qPCR assays through monitoring of an inshore bloom of Alexandrium catenella Group 1. Sci Rep. 2019;9:14532. (PMID: 31601884678722010.1038/s41598-019-51074-3) ; Murray SA, Diwan R, Orr RJ, Kohli GS, John U. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates. Mol Phylogenet Evol. 2015;92:165–80. (PMID: 2614086210.1016/j.ympev.2015.06.017) ; Salim D, Gerton JL. Ribosomal DNA instability and genome adaptability. Chromosome Res. 2019;27:73–87. (PMID: 3060434310.1007/s10577-018-9599-7) ; Keller MD, Selvin RC, Claus W, Guillard RRL. Media for the culture of oceanic ultraphytoplankton. J Phycol. 1987;23:633–8. (PMID: 10.1111/j.1529-8817.1987.tb04217.x) ; Scholin CA, Herzog M, Sogin M, Anderson DM. Identification of group- and strain-specific genetic markers for globally distributed Alexandrium (Dinophyceae).II. Sequence analysis of a fragment of the LSU rRNA gene. J Phycol. 1994;30:999–1011. (PMID: 10.1111/j.0022-3646.1994.00999.x) ; Nunn GB, Theisen BF, Christensen B, Arctander P. Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J Mol Evol. 1996;42:211–23. (PMID: 891987310.1007/BF02198847) ; Doblin MA, Blackburn SI, Hallegraeff GM. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J Exp Mar Bio Ecol. 1999;236:33–47. (PMID: 10.1016/S0022-0981(98)00193-2) ; Taroncher-Oldenburg G, Kulis DM, Anderson DM. Toxin variability during the cell cycle of the dinoflagellate Alexandrium fundyense. Limnol Oceanogr. 1997;42:1178–88. (PMID: 10.4319/lo.1997.42.5_part_2.1178) ; Figueroa RI, Garcés E, Bravo I. The use of flow cytometry for species identification and life-cycle studies in dinoflagellates. Deep Sea Res Part 2 Top Stud Oceanogr. 2010;57:301–7. (PMID: 10.1016/j.dsr2.2009.09.008) ; Vindelov LL, Christensen IJ, Nissen NI. Standardization of high-resolution flow cytometric DNA analysis by the simultaneous use of chicken and trout red blood cells as internal reference standards. Cytometry. 1983;3:328–31. (PMID: 683988110.1002/cyto.990030504) ; Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry Part A. 2003;51A:127–8. (PMID: 10.1002/cyto.a.10013) ; Ruvindy R, Bolch CJ, MacKenzie L, Smith KF, Murray SA. qPCR assays for the detection and quantification of multiple paralytic shellfish toxin-producing species of Alexandrium. Front Microbiol. 2018;9:3153. (PMID: 30619217630557610.3389/fmicb.2018.03153) ; Harwood DT, Boundy M, Selwood AI, van Ginkel R. Refinement and implementation of the Lawrence method (AOAC 2005.06) in a commercial laboratory: assay performance during an Alexandrium catenella bloom event. Harmful Algae. 2013;24:20–31. (PMID: 10.1016/j.hal.2013.01.003) ; Lofgren LA, Uehling JK, Branco S, Bruns TD, Martin F, Kennedy PG. Genome-based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Mol Ecol. 2019;28:721–30. (PMID: 3058265010.1111/mec.14995) ; Yarimizu K, Sildever S, Hamamoto Y, Tazawa S, Oikawa H, Yamaguchi H, et al. Development of an absolute quantification method for ribosomal RNA gene copy numbers per eukaryotic single cell by digital PCR. Harmful Algae. 2021;103:102008. (PMID: 3398044810.1016/j.hal.2021.102008) ; Nishimura T, Hariganeya N, Tawong W, Sakanari H, Yamaguchi H, Adachi M. Quantitative PCR assay for detection and enumeration of ciguatera-causing dinoflagellate Gambierdiscus spp. (Gonyaulacales) in coastal areas of Japan. Harmful Algae. 2016;52:11–22. (PMID: 2807346710.1016/j.hal.2015.11.018) ; Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. Mechanisms of rDNA copy number maintenance. Trends Genet. 2019;35:734–42. (PMID: 31395390674430310.1016/j.tig.2019.07.006) ; Ide S, Miyazaki T, Maki H, Kobayashi T. Abundance of ribosomal RNA gene copies maintains genome integrity. Science. 2010;327:693–6. (PMID: 2013357310.1126/science.1179044) ; Kobayashi T. Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci. 2011;68:1395–403. (PMID: 21207101306490110.1007/s00018-010-0613-2) ; Nemergut DR, Knelman JE, Ferrenberg S, Bilinski T, Melbourne B, Jiang L, et al. Decreases in average bacterial community rRNA operon copy number during succession. ISME J. 2016;10:1147–56. (PMID: 2656572210.1038/ismej.2015.191) ; Lavrinienko A, Jernfors T, Koskimäki JJ, Pirttilä AM, Watts PC. Does intraspecific variation in rDNA copy number affect analysis of microbial communities? Trends in Microbiology. 2021;29:19–27. (PMID: 3259350310.1016/j.tim.2020.05.019) ; Hou Y, Ji N, Zhang H, Shi X, Han H, Lin S. Genome size-dependent pcna gene copy number in dinoflagellates and molecular evidence of retroposition as a major evolutionary mechanism. J Phycol. 2019;55:37–46. (PMID: 3046851010.1111/jpy.12815) ; Hou Y, Lin S. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes. PLoS One. 2009;4:e6978. (PMID: 19750009273710410.1371/journal.pone.0006978) ; Figueroa RI, Cuadrado A, Stüken A, Rodríguez F, Fraga S. Ribosomal DNA organization patterns within the dinoflagellate genus Alexandrium as revealed by FISH: life cycle and evolutionary implications. Protist. 2014;165:343–63. (PMID: 2484605710.1016/j.protis.2014.04.001) ; Liu Y, Hu Z, Deng Y, Shang L, Gobler CJ, Tang YZ. Dependence of genome size and copy number of rRNA gene on cell volume in dinoflagellates. Harmful Algae. 2021;109:102108. (PMID: 3481502610.1016/j.hal.2021.102108) ; Kohli GS, John U, Figueroa RI, Rhodes LL, Harwood DT, Groth M, et al. Polyketide synthesis genes associated with toxin production in two species of Gambierdiscus (Dinophyceae). BMC Genomics. 2015;16:410. (PMID: 26016672444552410.1186/s12864-015-1625-y) ; Ott BM, Litaker RW, Holland WC, Delwiche CF. Using RDNA sequences to define dinoflagellate species. PLOS ONE. 2022;17:e0264143. (PMID: 35213572888092410.1371/journal.pone.0264143) ; McNichol J, Berube PM, Biller SJ, Fuhrman J A Evaluating and Improving Small Subunit rRNA PCR Primer Coverage for Bacteria, Archaea, and Eukaryotes Using Metagenomes from Global Ocean Surveys. mSystems 2021; 6: https://doi.org/10.1128/msystems.00565-21 . ; Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14. (PMID: 2627176010.1111/1462-2920.13023) ; Gonzalez-de-Salceda L, Garcia-Pichel F. The allometry of cellular DNA and ribosomal gene content among microbes and its use for the assessment of microbiome community structure. Microbiome. 2021;9:173. (PMID: 34404486837188310.1186/s40168-021-01111-z) ; Louca S, Doebeli M, Parfrey LW. Correcting for 16S rRNA gene copy numbers in microbiome surveys remains an unsolved problem. Microbiome. 2018;6:41. (PMID: 29482646582842310.1186/s40168-018-0420-9) ; Stoddard SF, Smith BJ, Hein R, Roller BRK, Schmidt TM. rrnDB: improved tools for interpreting rRNA gene abundance in bacteria and archaea and a new foundation for future development. Nucleic Acids Res. 2015;43:D593–598. (PMID: 2541435510.1093/nar/gku1201) ; Godhe A, Cusack C, Pedersen J, Andersen P, Anderson DM, Bresnan E, et al. Intercalibration of classical and molecular techniques for identification of Alexandrium fundyense (Dinophyceae) and estimation of cell densities. Harmful Algae. 2007;6:56–72. (PMID: 10.1016/j.hal.2006.06.002) ; Smith KF, Kohli GS, Murray SA, Rhodes LL. Assessment of the metabarcoding approach for community analysis of benthic-epiphytic dinoflagellates using mock communities. N Z J Marine Freshwater Res. 2017;51:555–76. (PMID: 10.1080/00288330.2017.1298632) ; Santi I, Kasapidis P, Karakassis I, Pitta P. A comparison of DNA metabarcoding and microscopy methodologies for the study of aquatic microbial eukaryotes. Diversity. 2021;13:180. (PMID: 10.3390/d13050180) ; Martin JL, Santi I, Pitta P, John U, Gypens N. Towards quantitative metabarcoding of eukaryotic plankton: an approach to improve 18S rRNA gene copy number bias. MBMG. 2022;6:e85794. (PMID: 10.3897/mbmg.6.85794) ; Kretzschmar AL, Verma A, Kohli G, Murray S. Development of a quantitative PCR assay for the detection and enumeration of a potentially ciguatoxin-producing dinoflagellate, Gambierdiscus lapillus (Gonyaulacales, Dinophyceae). PLOS ONE. 2019;14:e0224664. (PMID: 31730656685791010.1371/journal.pone.0224664) ; Menden-Deuer S, Lessard EJ. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol Oceanogr. 2000;45:569–79. (PMID: 10.4319/lo.2000.45.3.0569) ; Zhu F, Massana R, Not F, Marie D, Vaulot D. Mapping of picoeucaryotes in marine ecosystems with quantitative PCR of the 18S rRNA gene. FEMS Microbiol Ecol. 2005;52:79–92. (PMID: 1632989510.1016/j.femsec.2004.10.006) ; Vandersea MW, Kibler SR, Holland WC, Tester PA, Schultz TF, Faust MA, et al. Development of semi-quantitative PCR assays for the detection and enumeration of Gambierdiscus species (Gonyaulacales, Dinophyceae). J Phycol. 2012;48:902–15. (PMID: 2700900110.1111/j.1529-8817.2012.01146.x) ; Nand A, Zhan Y, Salazar OR, Aranda M, Voolstra CR, Dekker J. Genetic and spatial organization of the unusual chromosomes of the dinoflagellate Symbiodinium microadriaticum. Nature Genetics. 2021;53:618–29. (PMID: 33927399811047910.1038/s41588-021-00841-y) ; Kretzschmar AL, Verma A, Murray S, Kahlke T, Fourment M, Darling AE. Trial by phylogenetics—Evaluating the Multi-Species Coalescent for phylogenetic inference on taxa with high levels of paralogy (Gonyaulacales, Dinophyceae). bioRxiv. https://doi.org/10.1101/683383 . ; Farrell H, O’Connor WA, Seebacher F, Harwood TD, Murray S. Molecular detection of the SxtA gene from saxitoxin-producing Alexandrium minutum in commercial oysters. J Shellfish Res. 2016;35:169–77. (PMID: 10.2983/035.035.0118)
  • Grant Information: FT12 Department of Education and Training | Australian Research Council (ARC); HDR Scholarship University of Technology Sydney (University of Technology, Sydney)
  • Entry Date(s): Date Created: 20230708 Latest Revision: 20231108
  • Update Code: 20240513
  • PubMed Central ID: PMC10329664

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -