Zum Hauptinhalt springen

Annotation of transposable elements in the transcriptome of the Neotropical brown stink bug Euschistus heros and its chromosomal distribution.

Dionisio, JF ; Pezenti, LF ; et al.
In: Molecular genetics and genomics : MGG, Jg. 298 (2023-11-01), Heft 6, S. 1377-1388
Online academicJournal

Titel:
Annotation of transposable elements in the transcriptome of the Neotropical brown stink bug Euschistus heros and its chromosomal distribution.
Autor/in / Beteiligte Person: Dionisio, JF ; Pezenti, LF ; de Souza RF ; Sosa-Gómez, DR ; da Rosa R
Link:
Zeitschrift: Molecular genetics and genomics : MGG, Jg. 298 (2023-11-01), Heft 6, S. 1377-1388
Veröffentlichung: Berlin : Springer-Verlag, c2001-, 2023
Medientyp: academicJournal
ISSN: 1617-4623 (electronic)
DOI: 10.1007/s00438-023-02063-9
Schlagwort:
  • In Situ Hybridization, Fluorescence
  • Phylogeny
  • Retroelements
  • Chromosomes
  • Transcriptome genetics
  • DNA Transposable Elements genetics
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Mol Genet Genomics] 2023 Nov; Vol. 298 (6), pp. 1377-1388. <i>Date of Electronic Publication: </i>2023 Aug 30.
  • MeSH Terms: Transcriptome* / genetics ; DNA Transposable Elements* / genetics ; In Situ Hybridization, Fluorescence ; Phylogeny ; Retroelements ; Chromosomes
  • References: Aguiar RCM, Husch PE, Gallo RB et al (2017) Effects of thiamethoxam and lambda-cyhalothrin on spermatogenesis of Euschistus heros (Heteroptera: Pentatomidae). Entomol Sci 20:279–287. https://doi.org/10.1111/ens.12257. (PMID: 10.1111/ens.12257) ; Akaike H (1981) Likelihood of a model and information criteria. J Econom 16(1):3–14. https://doi.org/10.1016/0304-4076(81)90071-3. (PMID: 10.1016/0304-4076(81)90071-3) ; Amorim IC, Sotero-Caio CG, Costa RGC, Xavier C, de Moura RC (2021) Comprehensive mapping of transposable elements reveals distinct patterns of element accumulation on chromosomes of wild beetles. Chromosome Res 29(2):203–218. https://doi.org/10.1007/s10577-021-09655-4. (PMID: 10.1007/s10577-021-09655-433638119) ; Attardo GM, Abd-Alla AMM, Acosta-Serrano A et al (2019) Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 20(1):187. https://doi.org/10.1186/s13059-019-1768-2. (PMID: 10.1186/s13059-019-1768-2314771736721284) ; Bao W, Kojima KK, Kohany O (2015) Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. https://doi.org/10.1186/s13100-015-0041-9. (PMID: 10.1186/s13100-015-0041-9260457194455052) ; Bardella VB, Fernandes T, Vanzela ALL (2013a) The conservation of number and location of 18S sites indicates the relative stability of rDNA in species of Pentatomomorpha (Heteroptera). Genome 56:425–429. https://doi.org/10.1139/gen-2013-0140. (PMID: 10.1139/gen-2013-014024099395) ; Bardella VB, Grazia J, Fernandes JAM, Vanzela ALL (2013b) High diversity in CMA3/DAPI-banding patterns in heteropterans. Cytogenet Genome Res 142:46–53. https://doi.org/10.1159/000355214. (PMID: 10.1159/00035521424060939) ; Ben Amara W, Quesneville H, Khemakhem MM (2021) A genomic survey of Mayetiola destructor mobilome provides new insights into the evolutionary history of transposable elements in the cecidomyiid midges. PLoS ONE 16(10):e0257996. https://doi.org/10.1371/journal.pone.0257996. (PMID: 10.1371/journal.pone.0257996346340728504770) ; Biemont C, Vieira C (2006) Junk DNA as an evolutionary force. Nature 443:521–524. https://doi.org/10.1038/443521a. (PMID: 10.1038/443521a17024082) ; Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):21114–21120. https://doi.org/10.1093/bioinformatics/btu170. (PMID: 10.1093/bioinformatics/btu170) ; Bourgeois Y, Boissinot S (2019) On the population dynamics of junk: a review on the population genomics of transposable elements. Genes 10(6):419. https://doi.org/10.3390/genes1006041. (PMID: 10.3390/genes1006041311513076627506) ; Bourque G, Burns KH, Gehring M et al (2018) Ten things you should know about transposable elements. Genome Biol 19:199. https://doi.org/10.1186/s13059-018-1577-z. (PMID: 10.1186/s13059-018-1577-z304540696240941) ; Bowen NJ, McDonald JF (2001) Drosophila euchromatic LTR retrotransposons are much younger than the host species in which they reside. Genome Res 11(9):1527–1540. https://doi.org/10.1101/gr.164201. (PMID: 10.1101/gr.16420111544196311128) ; Brevik K, Bueno EM, McKay S, Schoville SD, Chen YH (2020) Insecticide exposure affects intergenerational patterns of DNA methylation in the Colorado potato beetle. Leptinotarsa Decemlineata Evol Appl 14(3):746–757. https://doi.org/10.1111/eva.13153. (PMID: 10.1111/eva.1315333767749) ; Capy P, Vitalis R, Langin T, Higuet D, Bazin C (1996) Relationships between transposable elements based upon the integrase-transposase domains: is there a common ancestor? J Mol Evol 42(3):359–368. https://doi.org/10.1007/BF02337546. (PMID: 10.1007/BF023375468661997) ; Castro MRJ, Goubert C, Monteiro FA, Vieira C, Carareto CMA (2020) Homology-free detection of transposable elements unveils their dynamics in three ecologically distinct Rhodnius species. Genes 11(2):170. https://doi.org/10.3390/genes11020170. (PMID: 10.3390/genes11020170320412157073582) ; Cermak T, Kubat Z, Hobza R et al (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16(7):961–976. https://doi.org/10.1007/s10577-008-1254-2. (PMID: 10.1007/s10577-008-1254-218853265) ; Chalopin D, Naville M, Plard F, Galiana D, Volff JN (2015) Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol 7(2):567–580. https://doi.org/10.1093/gbe/evv005. (PMID: 10.1093/gbe/evv005255771994350176) ; Chénais B, Caruso A, Hiard S, Casse N (2012) The impact of transposable elements on eukaryotic genomes: from genome size increase to genetic adaptation to stressful environments. Gene 509(1):7–15. https://doi.org/10.1016/j.gene.2012.07.042. (PMID: 10.1016/j.gene.2012.07.04222921893) ; Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676. https://doi.org/10.1093/bioinformatics/bti610. (PMID: 10.1093/bioinformatics/bti61016081474) ; Dimitri P, Junakovic N, Arcà B (2003) Colonization of heterochromatic genes by transposable elements in Drosophila. Mol Biol Evol 20(4):503–512. https://doi.org/10.1093/molbev/msg048. (PMID: 10.1093/molbev/msg04812654931) ; Dionisio JF, da Cruz Baldissera JN, Tiepo AN, Fernandes JAM, Sosa-Gómez DR, da Rosa R (2020) New cytogenetic data for three species of Pentatomidae (Heteroptera): Dichelops melacanthus (Dallas, 1851) Loxa viridis (Palisot de Beauvois, 1805) and Edessa collaris (Dallas, 1851). Comp Cytogenet 14(4):577–588. https://doi.org/10.3897/CompCytogen.v14i4.56743. (PMID: 10.3897/CompCytogen.v14i4.56743332443567686203) ; Dubin MJ, Mittelsten Scheid O, Becker C (2018) Transposons: a blessing curse. Curr Opin Plant Biol 42:23–29. https://doi.org/10.1016/j.pbi.2018.01.003. (PMID: 10.1016/j.pbi.2018.01.00329453028) ; Fablet M, Vieira C (2011) Evolvability, epigenetics and transposable elements. Biomol Concepts 2(5):333–341. https://doi.org/10.1515/BMC.2011.035. (PMID: 10.1515/BMC.2011.03525962041) ; Fernández-Medina RD, Carareto CMA, Struchiner CJ, Ribeiro JMC (2017) Transposable elements in the Anopheles funestus transcriptome. Genetica 145(3):275–293. https://doi.org/10.1007/s10709-017-9964-z. (PMID: 10.1007/s10709-017-9964-z284249745584644) ; Filee J, Rouault JD, Harry M, Hua-Van A (2015) Mariner transposons are sailing in the genome of the blood-sucking bug Rhodnius prolixus. BMC Genomics 16:1061. https://doi.org/10.1186/s12864-015-2060-9. (PMID: 10.1186/s12864-015-2060-9266662224678618) ; Glugoski L, Giuliano-Caetano L, Moreira-Filho O, Vicari MR, Nogaroto V (2018) Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene 650:49–54. https://doi.org/10.1016/j.gene.2018.01.099. (PMID: 10.1016/j.gene.2018.01.09929408629) ; Grabherr MG, Haas BJ, Yassour M (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652. https://doi.org/10.1038/nbt.1883. (PMID: 10.1038/nbt.1883215724403571712) ; Grozeva SM, Nokkala S (2001) Chromosome numbers, sex determining systems, and patterns of the C-heterochromatin distribution in 13 species of lace bugs (Heteroptera, Tingidae). Folia Biol 49(1–2):29–41. ; Hartl DL, Lohe AR, Lozovskaya ER (1997) Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu Rev Genet 31:337–358. https://doi.org/10.1146/annurev.genet.31.1.337. (PMID: 10.1146/annurev.genet.31.1.3379442899) ; Hernandez-Hernandez EM, Fernández-Medina RD, Navarro-Escalante L (2017) Genome-wide analysis of transposable elements in the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): description of novel families. Mol Genet Genom 292(3):565–583. https://doi.org/10.1007/s00438-017-1291-7. (PMID: 10.1007/s00438-017-1291-7) ; Jiang F, Yang M, Guo W, Wang X, Kang L (2012) Large-scale transcriptome analysis of retroelements in the migratory locust Locusta migratoria. PLoS ONE 7:e40532. https://doi.org/10.1371/journal.pone.0040532. (PMID: 10.1371/journal.pone.0040532227923633391268) ; Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282. https://doi.org/10.1093/bioinformatics/8.3.275. (PMID: 10.1093/bioinformatics/8.3.2751633570) ; Kelley J, Peyton J, Fiston-Lavier AS et al (2014) Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat Commun 5:4611. https://doi.org/10.1038/ncomms5611. (PMID: 10.1038/ncomms561125118180) ; Kerisew B (2012) Cytogenetic investigations on some species of the family pentatomidae (Insecta: Hemiptera: Heteroptera). Punjabi University, Thesis, India, p 169. ; Klai K, Chénais B, Zidi M et al (2020) Screening of Helicoverpa armigera Mobilome revealed transposable element insertions in insecticide resistance genes. InSects 11:879. https://doi.org/10.3390/insects11120879. (PMID: 10.3390/insects11120879333224327764229) ; Klai K, Zidi M, Chénais B et al (2022) Miniature inverted-repeat transposable elements (MITEs) in the two lepidopteran genomes of Helicoverpa armigera and Helicoverpa zea. InSects 13(4):313. https://doi.org/10.3390/insects13040313. (PMID: 10.3390/insects13040313354477559033116) ; Kojima KK (2018) Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA 9:2. https://doi.org/10.1186/s13100-017-0107-y. (PMID: 10.1186/s13100-017-0107-y293080935753468) ; Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) Mega X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096. (PMID: 10.1093/molbev/msy096297228875967553) ; Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923. (PMID: 10.1038/nmeth.1923223882863322381) ; Le Goff G, Hilliou F (2017) Resistance evolution in Drosophila: the case of CYP6G1. Pest Manag Sci 73(3):493–499. https://doi.org/10.1002/ps.4470. (PMID: 10.1002/ps.447027787942) ; Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25(7):1307–1320. https://doi.org/10.1093/molbev/msn067. (PMID: 10.1093/molbev/msn06718367465) ; Llorens C, Futami R, Covelli L et al (2011) The gypsy database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq1061. (PMID: 10.1093/nar/gkq106121036865) ; Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-8255162814302049) ; Miller K, Lynch C, Martin J, Herniou E, Tristem M (1999) Identification of multiple Gypsy LTR-retrotransposon lineages in vertebrate genomes. J Mol Evol 49(3):358–366. https://doi.org/10.1007/pl00006559. (PMID: 10.1007/pl0000655910473777) ; Mistry J, Chuguransky S, Williams L et al (2021) Pfam: The protein families database in 2021. Nucleic Acids Res 49(1):D412–D419. https://doi.org/10.1093/nar/gkaa913. (PMID: 10.1093/nar/gkaa91333125078) ; Montiel EE, Cabrero J, Camacho JP (2012) Gypsy, RTE and Mariner transposable elements populate Eyprepocnemis plorans genome. Genetica 140(7–9):365–374. https://doi.org/10.1007/s10709-012-9686-1. (PMID: 10.1007/s10709-012-9686-123073915) ; Nene V, Wortman JR, Lawson D et al (2007) Genome sequence of Aedes aegypti, a major arbovirus vector. Science 316(5832):1718–1723. https://doi.org/10.1126/science.1138878. (PMID: 10.1126/science.113887817510324) ; Oliveira SG, Cabral-de-Mello DC, Moura RC, Martins C (2013) Chromosomal organization and evolutionary history of Mariner transposable elements in Scarabaeinae coleopterans. Mol Cytogenet 6:54. https://doi.org/10.1186/1755-8166-6-54. (PMID: 10.1186/1755-8166-6-54242861293906913) ; Palacios-Gimenez OM, Bueno D, Cabral-de-Mello DC (2014) Chromosomal mapping of two mariner-like elements in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) reveals enrichment in euchromatin. Eur J Entomol 111(3):329–334. https://doi.org/10.14411/eje.2014.052. (PMID: 10.14411/eje.2014.052) ; Panizzi AR (2015) Growing problems with stink bugs (Hemiptera: Heteroptera: Pentatomidae): species invasive to the U.S. and potential neotropical invaders. Am Entomol 61(4):223–233. https://doi.org/10.1093/ae/tmv068. (PMID: 10.1093/ae/tmv068) ; Papeschi AG, Mola LM, Bressa MJ, Greizerstein EJ, Lia V, Poggio L (2003) Behaviour of ring bivalents in holokinetic systems: alternative sites of spindle attachment in Pachylis argentinus and Nezara viridula (Heteroptera). Chromosome Res 11(8):725–733. https://doi.org/10.1023/b:chro.0000005740.56221.03. (PMID: 10.1023/b:chro.0000005740.56221.0314712858) ; Pappalardo AM, Ferrito V, Biscotti MA, Canapa A, Capriglione T (2021) Transposable elements and stress in vertebrates: an overview. Int J Mol Sci 22(4):1970. https://doi.org/10.3390/ijms22041970. (PMID: 10.3390/ijms22041970336712157922186) ; Peccoud J, Loiseau V, Cordaux R, Clément G (2017) Massive horizontal transfer of transposable elements in insects. Proc Natl Acad Sci USA 114(18):4721–4726. https://doi.org/10.1073/pnas.1621178114. (PMID: 10.1073/pnas.1621178114284167025422770) ; Petersen M, Armisén D, Gibbs RA et al (2019) Diversity and evolution of the transposable element repertoire in arthropods with particular reference to insects. BMC Evol Biol 19:11. https://doi.org/10.1186/s12862-018-1324-9. (PMID: 10.1186/s12862-018-1324-9306263216327564) ; Pezenti LF, Sosa-Gómez DR, de Souza RF et al (2021) Transcriptional profiling analysis of susceptible and resistant strains of Anticarsia gemmatalis and their response to Bacillus thuringiensis. Genomics 113(4):2264–2275. https://doi.org/10.1016/j.ygeno.2021.05.012. (PMID: 10.1016/j.ygeno.2021.05.01234022342) ; Plasterk RH, Izsvák Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15(8):326–332. https://doi.org/10.1016/s0168-9525(99)01777-1. (PMID: 10.1016/s0168-9525(99)01777-110431195) ; Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10(6):417–430. https://doi.org/10.1038/nrmicro2790. (PMID: 10.1038/nrmicro279022565130) ; Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120(3–4):351–357. https://doi.org/10.1159/000121084. (PMID: 10.1159/00012108418504364) ; Ray DA, Grimshaw JR, Halsey MK (2019) Simultaneous TE analysis of 19 heliconiine butterflies yields novel insights into rapid TE-based genome diversification and multiple SINE births and deaths. Genome Biol Evol 11(8):2162–2177. https://doi.org/10.1093/gbe/evz125. (PMID: 10.1093/gbe/evz125312146866685494) ; Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot4455. (PMID: 10.1101/pdb.prot4455) ; Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 9:537–546. https://doi.org/10.1016/j.tree.2010.06.001. (PMID: 10.1016/j.tree.2010.06.001) ; Schwarzacher T, Heslop-Harrison JS (2000) Pratical in situ hybridization. BIOS Scientific Publishers Ltda, Oxford, p 199. ; Sicat JPA, Visendi P, Sewe SO, Bouvaine S, Seal SE (2022) Characterization of transposable elements within the Bemisia tabaci species complex. Mob DNA 13(1):12. https://doi.org/10.1186/s13100-022-00270-6. (PMID: 10.1186/s13100-022-00270-6354400979017028) ; Signor S, Yocum G, Bowsher J (2022) Life stage and the environment as effectors of transposable element activity in two bee species. J Insect Physiol 137:1–12. https://doi.org/10.1016/j.jinsphys.2022.104361. (PMID: 10.1016/j.jinsphys.2022.104361) ; Silva JC, Loreto EL, Clark JB (2004) Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 6(1):57–71. https://doi.org/10.21775/cimb.006.057. (PMID: 10.21775/cimb.006.05714632259) ; Sosa-Gómez DR, Da Silva JJ, Lopes ION et al (2009) Insecticide susceptibility of Euschistus heros (Heteroptera: Pentatomidae) in Brazil. J Econ Entomol 102(3):1209–1216. https://doi.org/10.1603/029.102.0346. (PMID: 10.1603/029.102.034619610440) ; Sosa-Gómez DR, Corrêa-Ferreira BS, Kraemer B (2020) Prevalence, damage, management and insecticide resistance of stink bug populations (Hemiptera: Pentatomidae) in commodity crops. Agr Forest Entomol 22:99–118. https://doi.org/10.1111/afe.12366. (PMID: 10.1111/afe.12366) ; Souza HV, Itoyama MM (2010) Comparative study of spermatogenesis and nucleolar behavior in testicular lobes of Euschistus heros (Heteroptera: Pentatomidae). Psyche. https://doi.org/10.1155/2010/428673. (PMID: 10.1155/2010/428673) ; Storer J, Hubley R, Rosen J, Wheeler TJ, Smit AF (2021) The Dfam community resource of transposable element families, sequence models, and genome annotations. Mob DNA 12:2. https://doi.org/10.1186/s13100-020-00230-y. (PMID: 10.1186/s13100-020-00230-y334360767805219) ; Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1093/nar/22.22.4673. (PMID: 10.1093/nar/22.22.46737984417308517) ; Torti C, Gomulski LM, Moralli D (2000) Evolution of different subfamilies of mariner elements within the medfly genome inferred from abundance and chromosomal distribution. Chromosoma 108(8):523–532. https://doi.org/10.1007/s004120050404. (PMID: 10.1007/s00412005040410794574) ; Ullastres A, Merenciano M, González J (2021) Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol 22(265):1–30. https://doi.org/10.1186/s13059-021-02471-3. (PMID: 10.1186/s13059-021-02471-3) ; Viera A, Page J, Rufas JS (2009) Inverted meiosis: the true bugs as a model to study. Genome Dyn 5:137–156. https://doi.org/10.1159/000166639. (PMID: 10.1159/00016663918948713) ; Wallau GL, Ortiz MF, Loreto ELS (2012) Horizontal transposon transfer in Eukarya: detection, bias, and perspectives. Genome Biol Evol 4(8):801–811. https://doi.org/10.1093/gbe/evs055. (PMID: 10.1093/gbe/evs0553516303) ; Wallau GL, Capy P, Loreto E, Le Rouzic A, Hua-Van A (2016) VHICA, a new method to discriminate between vertical and horizontal transposon transfer: application to the mariner family within Drosophila. Mol Biol Evol 33(4):1094–1109. https://doi.org/10.1093/molbev/msv341. (PMID: 10.1093/molbev/msv34126685176) ; Wang S, Lorenzen MD, Beeman RW, Brown SJ (2008) Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome. Genome Biol 9:R61. https://doi.org/10.1186/gb-2008-9-3-r61. (PMID: 10.1186/gb-2008-9-3-r61183668012397513) ; Wang X, Fang X, Yang P et al (2014) The locust genome provides insight into swarm formation and long-distance flight. Nat Commun 5:2957. https://doi.org/10.1038/ncomms3957. (PMID: 10.1038/ncomms395724423660) ; Wells JN, Feschotte CA (2020) Field guide to Eukaryotic transposable elements. Annu Rev Genet 54:539–561. https://doi.org/10.1146/annurev-genet-040620-022145. (PMID: 10.1146/annurev-genet-040620-022145329559448293684) ; Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. https://doi.org/10.1038/nrg2165. (PMID: 10.1038/nrg216517984973) ; Wu C, Lu J (2019) Diversification of transposable elements in arthropods and its impact on genome evolution. Genes 10(5):338. https://doi.org/10.3390/genes10050338. (PMID: 10.3390/genes10050338310640916562904) ; Zeng C, Li W, Liao Q et al (2019) Comparative transcriptomics reveals the expression differences between four developmental stages of american cockroach (Periplaneta americana). DNA Cell Biol 38(10):1078–1087. https://doi.org/10.1089/dna.2018.4578. (PMID: 10.1089/dna.2018.457831524500) ; Zidi M, Klai K, Confais J et al (2022) Genome-Wide Screening of transposable elements in the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), revealed insertions with potential insecticide resistance implications. InSects 13(5):396. https://doi.org/10.3390/insects13050396. (PMID: 10.3390/insects13050396356217329143410)
  • Grant Information: Finance code 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 305398/2018 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 307356/2020-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico
  • Contributed Indexing: Keywords: Fluorescent in situ hybridization; Hemiptera; Holocentric chromosomes; RNA-Seq; Repetitive DNA
  • Substance Nomenclature: 0 (DNA Transposable Elements) ; 0 (Retroelements)
  • Entry Date(s): Date Created: 20230830 Date Completed: 20231120 Latest Revision: 20240103
  • Update Code: 20240103

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -