Zum Hauptinhalt springen

Identification of Plant Transcription Factor DNA-Binding Sites Using seq-DAP-seq.

Hutin, S ; Blanc-Mathieu, R ; et al.
In: Methods in molecular biology (Clifton, N.J.), Jg. 2698 (2023), S. 119-145
academicJournal

Titel:
Identification of Plant Transcription Factor DNA-Binding Sites Using seq-DAP-seq.
Autor/in / Beteiligte Person: Hutin, S ; Blanc-Mathieu, R ; Rieu, P ; Parcy, F ; Lai, X ; Zubieta, C
Zeitschrift: Methods in molecular biology (Clifton, N.J.), Jg. 2698 (2023), S. 119-145
Veröffentlichung: Totowa, NJ : Humana Press ; <i>Original Publication</i>: Clifton, N.J. : Humana Press,, 2023
Medientyp: academicJournal
ISSN: 1940-6029 (electronic)
DOI: 10.1007/978-1-0716-3354-0_9
Schlagwort:
  • DNA, Plant genetics
  • Binding Sites
  • Sequence Analysis, DNA
  • Transcription Factors genetics
  • Gene Expression Regulation
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Methods Mol Biol] 2023; Vol. 2698, pp. 119-145.
  • MeSH Terms: Transcription Factors* / genetics ; Gene Expression Regulation* ; DNA, Plant / genetics ; Binding Sites ; Sequence Analysis, DNA
  • References: Babu MM, Luscombe NM, Aravind L et al (2004) Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol 14:283–291. (PMID: 10.1016/j.sbi.2004.05.00415193307) ; Robertson G, Hirst M, Bainbridge M et al (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods 4:651–657. (PMID: 10.1038/nmeth106817558387) ; Mukhopadhyay A, Deplancke B, Walhout AJM et al (2008) Chromatin immunoprecipitation (ChIP) coupled to detection by quantitative real-time PCR to study transcription factor binding to DNA in Caenorhabditis elegans. Nat Protoc 3:698–709. (PMID: 10.1038/nprot.2008.38183889532681100) ; Meers MP, Bryson TD, Henikoff JG et al (2019) Improved CUT&RUN chromatin profiling tools. elife 8:e46314. (PMID: 10.7554/eLife.46314312326876598765) ; Skene PJ, Henikoff S (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. elife 6:e21856. (PMID: 10.7554/eLife.21856280790195310842) ; Skene PJ, Henikoff JG, Henikoff S (2018) Targeted in situ genome-wide profiling with high efficiency for low cell numbers. Nat Protoc 13:1006–1019. (PMID: 10.1038/nprot.2018.01529651053) ; Kaya-Okur HS, Wu SJ, Codomo CA et al (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10:1930. (PMID: 10.1038/s41467-019-09982-5310368276488672) ; Riley TR, Slattery M, Abe N et al (2014) SELEX-seq, a method for characterizing the complete repertoire of binding site preferences for transcription factor complexes. Methods Mol Biol 1196:255–278. (PMID: 10.1007/978-1-4939-1242-1_16251511694265583) ; Bulyk ML (2007) Protein binding microarrays for the characterization of DNA-protein interactions. Adv Biochem Eng Biotechnol 104:65–85. (PMID: 172908192727742) ; Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510. (PMID: 10.1126/science.22001212200121) ; Slattery M, Riley T, Liu P et al (2011) Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 147:1270–1282. (PMID: 10.1016/j.cell.2011.10.053221530723319069) ; Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822. (PMID: 10.1038/346818a01697402) ; O’Malley RC, Huang SC, Song L et al (2016) Cistrome and Epicistrome features shape the regulatory DNA landscape. Cell 165:1280–1292. (PMID: 10.1016/j.cell.2016.04.038272031134907330) ; Bartlett A, O’Malley RC, Huang SC et al (2017) Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc 12:1659–1672. (PMID: 10.1038/nprot.2017.055287268475576341) ; Li M, Lin W, Hinckley W, et al (2022) Uncovering the “ZIP code” for bZIP dimers reveals novel motifs, regulatory rules and one billion years of cis-element evolution, https://www.biorxiv.org/content/10.1101/2022.04.17.488518v1. ; Lai X, Vega-Léon R, Hugouvieux V et al (2021) The intervening domain is required for DNA-binding and functional identity of plant MADS transcription factors. Nat Commun 12:4760. (PMID: 10.1038/s41467-021-24978-w343629098346517) ; Lai X, Stigliani A, Lucas J et al (2020) Genome-wide binding of SEPALLATA3 and AGAMOUS complexes determined by sequential DNA-affinity purification sequencing. Nucleic Acids Res 48:9637–9648. (PMID: 10.1093/nar/gkaa729328903947515736) ; Vanyushin BF, Ashapkin VV (2011) DNA methylation in higher plants: past, present and future. Biochim Biophys Acta - Gene Regulatory Mechanisms 1809:360–368. (PMID: 10.1016/j.bbagrm.2011.04.006) ; Andrews S (2010) FastQC: a quality control tool for high throughput sequence data [Online]. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. ; Gaspar JM (2018) NGmerge: merging paired-end reads via novel empirically-derived models of sequencing errors. BMC Bioinform 19:536. (PMID: 10.1186/s12859-018-2579-2) ; Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. (PMID: 10.1038/nmeth.1923223882863322381) ; Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. (PMID: 10.1093/bioinformatics/btp352195059432723002) ; Quinlan AR (2014) BEDTools: the Swiss-Army tool for genome feature analysis. Curr Protoc Bioinformatics 47:11 12 1-34. (PMID: 10.1002/0471250953.bi1112s4725199790) ; Gaspar JM (2018) Improved peak-calling with MACS2. ; Jalili V, Matteucci M, Masseroli M et al (2018) Using combined evidence from replicates to evaluate ChIP-seq peaks. Bioinformatics 34:2338. (PMID: 10.1093/bioinformatics/bty11929547940) ; Bailey TL, Boden M, Buske FA et al (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208. (PMID: 10.1093/nar/gkp335194581582703892) ; Healey A, Furtado A, Cooper T et al (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10:21. (PMID: 10.1186/1746-4811-10-21250539694105509) ; Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114. btu170. (PMID: 10.1093/bioinformatics/btu170246954044103590) ; Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. (PMID: 10.1093/bioinformatics/btq033201102782832824) ; Dale RK, Pedersen BS, Quinlan AR (2011) Pybedtools: a flexible Python library for manipulating genomic datasets and annotations. Bioinformatics 27:3423–3424. (PMID: 10.1093/bioinformatics/btr539219492713232365) ; Wilson P, Ganguly D, Hou X, et al CTAB genomic DNA extraction from Arabidopsis leaf material, https://www.protocols.io/view/ctab-genomic-dna-extraction-from-arabidopsis-leaf-quidwue. ; Anderson CB, Franzmayr BK, Hong SW et al (2018) Protocol: a versatile, inexpensive, high-throughput plant genomic DNA extraction method suitable for genotyping-by-sequencing. Plant Methods 14:75. (PMID: 10.1186/s13007-018-0336-1301817646114050)
  • Contributed Indexing: Keywords: DNA affinity purification sequencing (DAP-seq); DNA methylation; Recombinant protein expression; Sequential DNA affinity purification sequencing (seq-DAP-seq); Sequential pull-down; Transcription factor binding sites (TFBS); Transcription factors (TF)
  • Substance Nomenclature: 0 (DNA, Plant) ; 0 (Transcription Factors)
  • Entry Date(s): Date Created: 20230908 Date Completed: 20230911 Latest Revision: 20230916
  • Update Code: 20240514

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -