Zum Hauptinhalt springen

Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb.

Ma, S ; Chen, M ; et al.
In: Nature, Jg. 622 (2023-10-01), Heft 7984, S. 802-809
Online academicJournal

Titel:
Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb.
Autor/in / Beteiligte Person: Ma, S ; Chen, M ; Jiang, Y ; Xiang, X ; Wang, S ; Wu, Z ; Li, S ; Cui, Y ; Wang, J ; Zhu, Y ; Zhang, Y ; Ma, H ; Duan, S ; Li, H ; Yang, Y ; Lingle, CJ ; Hu, H
Link:
Zeitschrift: Nature, Jg. 622 (2023-10-01), Heft 7984, S. 802-809
Veröffentlichung: Basingstoke : Nature Publishing Group ; <i>Original Publication</i>: London, Macmillan Journals ltd., 2023
Medientyp: academicJournal
ISSN: 1476-4687 (electronic)
DOI: 10.1038/s41586-023-06624-1
Schlagwort:
  • Animals
  • Mice
  • Half-Life
  • Neurons physiology
  • Time Factors
  • Protein Binding
  • Antidepressive Agents administration & dosage
  • Antidepressive Agents metabolism
  • Antidepressive Agents pharmacokinetics
  • Antidepressive Agents pharmacology
  • Depression drug therapy
  • Depression metabolism
  • Habenula drug effects
  • Habenula metabolism
  • Ketamine administration & dosage
  • Ketamine metabolism
  • Ketamine pharmacokinetics
  • Ketamine pharmacology
  • Receptors, N-Methyl-D-Aspartate antagonists & inhibitors
  • Receptors, N-Methyl-D-Aspartate metabolism
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Nature] 2023 Oct; Vol. 622 (7984), pp. 802-809. <i>Date of Electronic Publication: </i>2023 Oct 18.
  • MeSH Terms: Antidepressive Agents* / administration & dosage ; Antidepressive Agents* / metabolism ; Antidepressive Agents* / pharmacokinetics ; Antidepressive Agents* / pharmacology ; Depression* / drug therapy ; Depression* / metabolism ; Habenula* / drug effects ; Habenula* / metabolism ; Ketamine* / administration & dosage ; Ketamine* / metabolism ; Ketamine* / pharmacokinetics ; Ketamine* / pharmacology ; Receptors, N-Methyl-D-Aspartate* / antagonists & inhibitors ; Receptors, N-Methyl-D-Aspartate* / metabolism ; Animals ; Mice ; Half-Life ; Neurons / physiology ; Time Factors ; Protein Binding
  • Comments: Comment in: Nat Rev Drug Discov. 2023 Dec;22(12):955. (PMID: 37907752) ; Erratum in: Nature. 2023 Nov;623(7988):E11. (PMID: 37932497)
  • References: Anis, N. A., Berry, S. C., Burton, N. R. & Lodge, D. The dissociative anaesthetics, ketamine and phencyclidine, selectively reduce excitation of central mammalian neurones by N-methyl-aspartate. Br. J. Pharmacol. 79, 565–575 (1983). (PMID: 631711410.1111/j.1476-5381.1983.tb11031.x2044888) ; Berman, R. M. et al. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47, 351–354 (2000). (PMID: 1068627010.1016/S0006-3223(99)00230-9) ; Zarate, C. A. Jr et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch. Gen. Psychiatry 63, 856–864 (2006). (PMID: 1689406110.1001/archpsyc.63.8.856) ; Krystal, J. H., Abdallah, C. G., Sanacora, G., Charney, D. S. & Duman, R. S. Ketamine: a paradigm shift for depression research and treatment. Neuron 101, 774–778 (2019). (PMID: 3084439710.1016/j.neuron.2019.02.0056560624) ; Maxwell, C. R. et al. Ketamine produces lasting disruptions in encoding of sensory stimuli. J. Pharmacol. Exp. Ther. 316, 315–324 (2006). (PMID: 1619231310.1124/jpet.105.091199) ; Maeng, S. et al. Cellular mechanisms underlying the antidepressant effects of ketamine: role of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol. Psychiatry 63, 349–352 (2008). (PMID: 1764339810.1016/j.biopsych.2007.05.028) ; Li, N. et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329, 959–964 (2010). (PMID: 2072463810.1126/science.11902873116441) ; Autry, A. E. et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475, 91–95 (2011). (PMID: 2167764110.1038/nature101303172695) ; Zanos, P. et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533, 481–486 (2016). (PMID: 2714435510.1038/nature179984922311) ; Yang, Y. et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression. Nature 554, 317–322 (2018). (PMID: 2944638110.1038/nature25509) ; Cerniauskas, I. et al. Chronic stress induces activity, synaptic, and transcriptional remodeling of the lateral habenula associated with deficits in motivated behaviors. Neuron 104, 899–915.e8 (2019). (PMID: 3167226310.1016/j.neuron.2019.09.0056895430) ; Hu, H., Cui, Y. & Yang, Y. Circuits and functions of the lateral habenula in health and in disease. Nat. Rev. Neurosci. 21, 277–295 (2020). (PMID: 3226931610.1038/s41583-020-0292-4) ; Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007). (PMID: 1752262910.1038/nature05860) ; Stamatakis, A. M. & Stuber, G. D. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15, 1105–1107 (2012). (PMID: 2272917610.1038/nn.31453411914) ; Jhou, T. C., Geisler, S., Marinelli, M., Degarmo, B. A. & Zahm, D. S. The mesopontine rostromedial tegmental nucleus: a structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta. J. Comp. Neurol. 513, 566–596 (2009). (PMID: 1923521610.1002/cne.218913116663) ; Shumake, J., Edwards, E. & Gonzalez-Lima, F. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior. Brain Res. 963, 274–281 (2003). (PMID: 1256013310.1016/S0006-8993(02)04048-9) ; Li, B. et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression. Nature 470, 535–539 (2011). (PMID: 2135048610.1038/nature097423285101) ; Morris, J. S., Smith, K. A., Cowen, P. J., Friston, K. J. & Dolan, R. J. Covariation of activity in habenula and dorsal raphé nuclei following tryptophan depletion. NeuroImage 10, 163–172 (1999). (PMID: 1041724810.1006/nimg.1999.0455) ; Lecca, S. et al. Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice. Nat. Med. 22, 254–261 (2016). (PMID: 2680834710.1038/nm.4037) ; Andalman, A. S. et al. Neuronal dynamics regulating brain and behavioral state transitions. Cell 177, 970–985.e20 (2019). (PMID: 3103100010.1016/j.cell.2019.02.0376726130) ; Yang, Y., Wang, H., Hu, J. & Hu, H. Lateral habenula in the pathophysiology of depression. Curr. Opin. Neurobiol. 48, 90–96 (2018). (PMID: 2917571310.1016/j.conb.2017.10.024) ; Li, K. et al. βCaMKII in lateral habenula mediates core symptoms of depression. Science 341, 1016–1020 (2013). (PMID: 2399056310.1126/science.12407293932364) ; Cui, Y., Hu, S. & Hu, H. Lateral habenular burst firing as a target of the rapid antidepressant effects of ketamine. Trends Neurosci. 42, 179–191 (2019). (PMID: 3082398410.1016/j.tins.2018.12.002) ; Clements, J. A., Nimmo, W. S. & Grant, I. S. Bioavailability, pharmacokinetics, and analgesic activity of ketamine in humans. J. Pharm. Sci. 71, 539–542 (1982). (PMID: 709750110.1002/jps.2600710516) ; Newport, D. J. et al. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am. J. Psychiatry 172, 950–966 (2015). (PMID: 2642348110.1176/appi.ajp.2015.15040465) ; White, P. F., Way, W. L. & Trevor, A. J. Ketamine—its pharmacology and therapeutic uses. Anesthesiology 56, 119–136 (1982). (PMID: 689247510.1097/00000542-198202000-00007) ; Hiemke, C. & Hartter, S. Pharmacokinetics of selective serotonin reuptake inhibitors. Pharmacol. Ther. 85, 11–28 (2000). (PMID: 1067471110.1016/S0163-7258(99)00048-0) ; Kim, J. W. et al. Sustained effects of rapidly acting antidepressants require BDNF-dependent MeCP2 phosphorylation. Nat. Neurosci. 24, 1100–1109 (2021). (PMID: 3418386510.1038/s41593-021-00868-88338784) ; Moda-Sava, R. N. et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science 364, eaat8078 (2019). (PMID: 3097585910.1126/science.aat80786785189) ; Kotermanski, S. E. & Johnson, J. W. Mg 2+ imparts NMDA receptor subtype selectivity to the Alzheimer’s drug memantine. J. Neurosci. 29, 2774–2779 (2009). (PMID: 1926187310.1523/JNEUROSCI.3703-08.20092679254) ; Weiss, T. & Veh, R. W. Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices. Neuroscience 172, 74–93 (2011). (PMID: 2097422910.1016/j.neuroscience.2010.10.047) ; MacDonald, J. F., Miljkovic, Z. & Pennefather, P. Use-dependent block of excitatory amino acid currents in cultured neurons by ketamine. J. Neurophysiol. 58, 251–266 (1987). (PMID: 244362310.1152/jn.1987.58.2.251) ; MacDonald, J. F. et al. Action of ketamine, phencyclidine and MK-801 on NMDA receptor currents in cultured mouse hippocampus neurones. J. Physiol. 432, 483–508 (1991). (PMID: 183218410.1113/jphysiol.1991.sp0183961181337) ; Mealing, G. A., Lanthorn, T. H., Murray, C. L., Small, D. L. & Morley, P. Differences in degree of trapping of low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists with similar kinetics of block. J. Pharmacol. Exp. Ther. 288, 204–210 (1999). (PMID: 9862772) ; Parsons, C. G. et al. Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in vitro with anticonvulsive and motor impairment activity in vivo. Neuropharmacology 34, 1239–1258 (1995). (PMID: 857002210.1016/0028-3908(95)00092-K) ; Montgomery, J. M., Selcher, J. C., Hanson, J. E. & Madison, D. V. Dynamin-dependent NMDAR endocytosis during LTD and its dependence on synaptic state. BMC Neurosci. 6, 48 (2005). (PMID: 1604278110.1186/1471-2202-6-481187896) ; McQuate, A. & Barria, A. Rapid exchange of synaptic and extrasynaptic NMDA receptors in hippocampal CA1 neurons. J. Neurophysiol. 123, 1004–1014 (2020). (PMID: 3199544010.1152/jn.00458.20197474252) ; Huettner, J. E. & Bean, B. P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc. Natl Acad. Sci. USA 85, 1307–1311 (1988). (PMID: 244880010.1073/pnas.85.4.1307279756) ; Tovar, K. R. & Westbrook, G. L. Mobile NMDA receptors at hippocampal synapses. Neuron 34, 255–264 (2002). (PMID: 1197086710.1016/S0896-6273(02)00658-X) ; Lecca, S. et al. Aversive stimuli drive hypothalamus-to-habenula excitation to promote escape behavior. eLife 6, e30697 (2017). (PMID: 2887196210.7554/eLife.306975606847) ; Stamatakis, A. M. et al. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula regulate feeding and reward. J. Neurosci. 36, 302–311 (2016). (PMID: 2675882410.1523/JNEUROSCI.1202-15.20164710762) ; Zheng, Z. et al. Hypothalamus–habenula potentiation encodes chronic stress experience and drives depression onset. Neuron 110, 1400–1415.e6 (2022). (PMID: 3511410110.1016/j.neuron.2022.01.011) ; Lazaridis, I. et al. A hypothalamus–habenula circuit controls aversion. Mol. Psychiatry 24, 1351–1368 (2019). (PMID: 3075572110.1038/s41380-019-0369-56756229) ; Franceschelli, A., Sens, J., Herchick, S., Thelen, C. & Pitychoutis, P. M. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naive and “depressed” mice exposed to chronic mild stress. Neuroscience 290, 49–60 (2015). (PMID: 2559598510.1016/j.neuroscience.2015.01.008) ; Clements, J. D., Lester, R. A. J., Tong, G., Jahr, C. E. & Westbrook, G. L. The time course of glutamate in the synaptic cleft. Science 258, 1498–1501 (1992). (PMID: 135964710.1126/science.1359647) ; Buck, D. P., Howitt, S. M. & Clements, J. D. NMDA channel gating is influenced by a tryptophan residue in the M2 domain but calcium permeation is not altered. Biophys. J. 79, 2454–2462 (2000). (PMID: 1105312210.1016/S0006-3495(00)76488-51301130) ; Rosenmund, C., Feltz, A. & Westbrook, G. L. Synaptic NMDA receptor channels have a low open probability. J. Neurosci. 15, 2788–2795 (1995). (PMID: 753682010.1523/JNEUROSCI.15-04-02788.19956577776) ; Katz, B. & Miledi, R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. 231, 549–574 (1973). (PMID: 436121610.1113/jphysiol.1973.sp0102481350679) ; Cui, Y. et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323–327 (2018). (PMID: 2944637910.1038/nature25752) ; Yang, C. et al. R-ketamine: a rapid-onset and sustained antidepressant without psychotomimetic side effects. Transl. Psychiatry 5, e632 (2015). (PMID: 2632769010.1038/tp.2015.1365068814) ; Iosifescu, D. V. et al. Efficacy and safety of AXS-05 (dextromethorphan-bupropion) in patients with major depressive disorder: a phase 3 randomized clinical trial (GEMINI). J. Clin. Psychiatry 83, 21m14345 (2022). (PMID: 3564916710.4088/JCP.21m14345) ; Lodge, D. & Johnson, K. M. Noncompetitive excitatory amino acid receptor antagonists. Trends Pharmacol. Sci. 11, 81–86 (1990). (PMID: 215636510.1016/0165-6147(90)90323-Z) ; Traynelis, S. F. et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol. Rev. 62, 405–496 (2010). (PMID: 2071666910.1124/pr.109.0024512964903) ; Gideons, E. S., Kavalali, E. T. & Monteggia, L. M. Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc. Natl Acad. Sci. USA 111, 8649–8654 (2014). (PMID: 2491215810.1073/pnas.13239201114060670) ; Zarate, C. A. et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am. J. Psychiat. 163, 153–155 (2006). (PMID: 1639090510.1176/appi.ajp.163.1.153) ; Chu, P. S. et al. The destruction of the lower urinary tract by ketamine abuse: a new syndrome? BJU Int. 102, 1616–1622 (2008). (PMID: 1868049510.1111/j.1464-410X.2008.07920.x) ; Elias, W. J. et al. A randomized trial of focused ultrasound thalamotomy for essential tremor. N. Engl. J. Med. 375, 730–739 (2016). (PMID: 2755730110.1056/NEJMoa1600159) ; Sartorius, A. et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient. Biol. Psychiatry 67, e9–e11 (2010). (PMID: 1984606810.1016/j.biopsych.2009.08.027) ; Zhang, G. W. et al. Transforming sensory cues into aversive emotion via septal–habenular pathway. Neuron 99, 1016–1028.e5 (2018). (PMID: 3012237910.1016/j.neuron.2018.07.0236126968) ; Kim, K. S. & Han, P. L. Optimization of chronic stress paradigms using anxiety- and depression-like behavioral parameters. J. Neurosci. Res. 83, 497–507 (2006). (PMID: 1641642510.1002/jnr.20754) ; Porsolt, R. D., Le Pichon, M. & Jalfre, M. Depression: a new animal model sensitive to antidepressant treatments. Nature 266, 730–732 (1977). (PMID: 55994110.1038/266730a0) ; Liu, M. Y. et al. Sucrose preference test for measurement of stress-induced anhedonia in mice. Nat. Protoc. 13, 1686–1698 (2018). (PMID: 2998810410.1038/s41596-018-0011-z) ; Hasan, M. et al. Quantitative chiral and achiral determination of ketamine and its metabolites by LC–MS/MS in human serum, urine and fecal samples. J. Pharm. Biomed. Anal. 139, 87–97 (2017). (PMID: 2827993110.1016/j.jpba.2017.02.035) ; Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods. 11, 338–346 (2014). (PMID: 2450963310.1038/nmeth.28363943671) ; Mameli, M., Bellone, C., Brown, M. T. & Luscher, C. Cocaine inverts rules for synaptic plasticity of glutamate transmission in the ventral tegmental area. Nat. Neurosci. 14, 414–416 (2011). (PMID: 2133627010.1038/nn.2763) ; Maroteaux, M. & Mameli, M. Cocaine evokes projection-specific synaptic plasticity of lateral habenula neurons. J. Neurosci. 32, 12641–12646 (2012). (PMID: 2295685310.1523/JNEUROSCI.2405-12.20126621263) ; Dankovich, T. M. et al. Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R. Nat. Commun. 12, 7129 (2021). (PMID: 3488024810.1038/s41467-021-27462-78654841) ; Courtin, J. et al. Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505, 92–96 (2014). (PMID: 2425672610.1038/nature12755)
  • Grant Information: R35 GM118114 United States GM NIGMS NIH HHS
  • Substance Nomenclature: 0 (Antidepressive Agents) ; 690G0D6V8H (Ketamine) ; 0 (Receptors, N-Methyl-D-Aspartate)
  • Entry Date(s): Date Created: 20231018 Date Completed: 20231027 Latest Revision: 20240117
  • Update Code: 20240118
  • PubMed Central ID: PMC10600008

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -