Zum Hauptinhalt springen

Theoretical investigation of the effect of changing the auxiliary acceptor on the performance of organic D-A'-A dyes used as sensitizers in DSSCs.

Bouzineb, Y ; Fitri, A ; et al.
In: Journal of molecular modeling, Jg. 29 (2023-11-10), Heft 12, S. 365
Online academicJournal

Titel:
Theoretical investigation of the effect of changing the auxiliary acceptor on the performance of organic D-A'-A dyes used as sensitizers in DSSCs.
Autor/in / Beteiligte Person: Bouzineb, Y ; Fitri, A ; Benjelloun, AT ; Benzakour, M ; Mcharfi, M ; Bouachrine, M
Link:
Zeitschrift: Journal of molecular modeling, Jg. 29 (2023-11-10), Heft 12, S. 365
Veröffentlichung: Berlin : Springer, c1996-, 2023
Medientyp: academicJournal
ISSN: 0948-5023 (electronic)
DOI: 10.1007/s00894-023-05766-3
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [J Mol Model] 2023 Nov 10; Vol. 29 (12), pp. 365. <i>Date of Electronic Publication: </i>2023 Nov 10.
  • References: Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344. https://doi.org/10.1038/35104607. (PMID: 10.1038/3510460711713540) ; Huaulmé Q, Mwalukuku VM, Joly D et al (2020) Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency. Nat Energy. https://doi.org/10.1038/s41560-020-0624-7. (PMID: 10.1038/s41560-020-0624-7354751167612663) ; O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 354:737–740. (PMID: 10.1038/353737a0) ; Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663. (PMID: 10.1021/cr900356p20831177) ; Hardin BE, Snaith HJ, McGehee MD (2012) The renaissance of dye-sensitized solar cells. Nat Photonics 6:162–169. https://doi.org/10.1038/nphoton.2012.22. (PMID: 10.1038/nphoton.2012.22) ; Liang M, Chen J (2013) Arylamine organic dyes for dye-sensitized solar cells Chem Soc Rev 42:3453–3488. ; Sokolský M, Cirák J (2010) Dye-sensitized solar cells: materials and processes. Acta Electrotech Inform 10:78–81. ; Grätzel M (2004) Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J Photochem Photobiol A Chem 164:3–14. https://doi.org/10.1016/j.jphotochem.2004.02.023. (PMID: 10.1016/j.jphotochem.2004.02.023) ; Mishra A, Fischer MKR, Bäuerle P (2009) Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew Chem Int Ed 48:2474–2499. https://doi.org/10.1002/anie.200804709. (PMID: 10.1002/anie.200804709) ; Hachi M, Slimi A, Fitri A et al (2020) Theoretical design and characterization of D-A1-A based organic dyes for efficient DSSC by altering promising Acceptor (A1) moiety. J Photochem Photobiol A Chem:113048. https://doi.org/10.1016/j.jphotochem.2020.113048. ; Bouzineb Y, Slimi A, Raftani M et al (2020) Theoretical study of organic sensitizers based on 2,6-diphenyl-4H pyranylidene/1, 3, 4-oxadiazole for dye-sensitized solar cells. J Mol Model 26:1–12. (PMID: 10.1007/s00894-020-04611-1) ; Lee C, Li C, Ho K (2017) Use of organic materials in dye-sensitized solar cells. Mater Today. https://doi.org/10.1016/j.mattod.2017.01.012. (PMID: 10.1016/j.mattod.2017.01.012) ; Ocakoglu K, Harputlu E, Guloglu P, Erten-ela S (2012) The photovoltaic performance of new ruthenium complexes in DSSCs based on nanorod ZnO electrode. Synth Met 162:2125–2133. https://doi.org/10.1016/j.synthmet.2012.10.006. (PMID: 10.1016/j.synthmet.2012.10.006) ; Cerda B, Sivakumar R, Paulraj M (2016) Natural dyes as sensitizers to increase the efficiency in sensitized solar cells. J Phys 720. https://doi.org/10.1088/1742-6596/720/1/012030. ; Argazzi R, Larramona G, Contado C, Alberto C (2004) Preparation and photoelectrochemical characterization of a red sensitive osmium complex containing 4,4’,4’’-tricarboxy- 2,2’:6’,2"-terpyridine and cyanide ligands. J Photochem Photobiol A Chem 164:15–21. https://doi.org/10.1016/j.jphotochem.2003.12.016. (PMID: 10.1016/j.jphotochem.2003.12.016) ; Mathew S, Yella A, Gao P et al (2014) Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat Chem 6:242–247. https://doi.org/10.1038/nchem.1861. (PMID: 10.1038/nchem.186124557140) ; Zeng K, Lu Y, Tang W et al (2018) Efficient solar cells sensitized by a promising new type of porphyrin: dye-aggregation suppressed by double strapping. Chem Sci 41. https://doi.org/10.1039/c8sc04969f. ; Zhang J, Li H-B, Sun S-L et al (2012) Density functional theory characterization and design of high-performance diarylamine-fluorene dyes with different p spacers for dye-sensitized solar cells. J Mater Chem 22:568–576. https://doi.org/10.1039/c1jm13028e. (PMID: 10.1039/c1jm13028e) ; Slimi A, Fitri A, Benjelloun AT et al (2019) Molecular design of D-p-A-A organic dyes based on triphenylamine derivatives with various auxiliary acceptors for high performance DSSCs. J Electron Mater. https://doi.org/10.1007/s11664-019-07228-0. ; Che X, Chung C, Liu X et al (2016) Regioisomeric effects of donor – acceptor – acceptor ′ small-molecule donors on the open circuit voltage of organic photovoltaics. Adv Mater:1–8. https://doi.org/10.1002/adma.201601957. ; Ting H-C, Yang Y-T, Chen C-H et al (2016) Easy access to NO2 -containing donor – acceptor – acceptor electron donors for high efficiency small-molecule organic solar cells. Chemsuschem 9:1433–1441. https://doi.org/10.1002/cssc.201600361. (PMID: 10.1002/cssc.20160036127213296) ; Marco AB, De BM, Franco S et al (2015) Dithienopyrrole as a rigid alternative to the bithiophene p relay in chromophores with second-order nonlinear optical properties. Chem Asian J 10:188–197. https://doi.org/10.1002/asia.201402870. (PMID: 10.1002/asia.20140287025293809) ; Marco AB, Andreu R, Franco S et al (2013) Push-pull systems bearing a quinoid/aromatic thieno[3,2-b]thiophene moiety: synthesis, ground state polarization and second-order nonlinear properties. Org Biomol Chem. https://doi.org/10.1039/C3OB41278D. (PMID: 10.1039/C3OB41278D23945744) ; Andreu R, Galan E, Orduna J et al (2011) Aromatic / proaromatic donors in 2-dicyanomethylenethiazole merocyanines: from neutral to strongly zwitterionic nonlinear optical. Chem Eur J 17:826–838. https://doi.org/10.1002/chem.201002158. (PMID: 10.1002/chem.20100215821226097) ; Solanke P, Achelle S, Cabon N et al (2016) Proaromatic pyranylidene chalcogen analogues and cyclopenta[c]thiophen-4,6-dione as electron donors and acceptor in efficient charge-transfer chromophores. Dye Pigment. https://doi.org/10.1016/j.dyepig.2016.07.008. (PMID: 10.1016/j.dyepig.2016.07.008) ; Achelle S, Malval J, Aloïse S et al (2013) Synthesis , photophysics and nonlinear optical properties of stilbenoid pyrimidine-based dyes bearing methylenepyran donor groups. ChemPhysChem:1–13. https://doi.org/10.1002/cphc.201300419. ; Gauthier S, Vologdin N, Achelle S et al (2013) Methylenepyran based dipolar and quadrupolar dyes: synthesis, electrochemical and photochemical properties. Tetrahedron 69:8392–8399. https://doi.org/10.1016/j.tet.2013.07.066. (PMID: 10.1016/j.tet.2013.07.066) ; Faux N, Guen FR, Poul L et al (2006) Synthesis and NLO properties of 4- (4 H -chalcogenopyran-4-ylidene and 4 H - chalcogenochromen-4-ylidene ) -1- (phenylthio ) but-2-enylidene complexes – electronic influence of the carbene fragment. Eur J Inorg Chem:3489–3497. https://doi.org/10.1002/ejic.200600300. ; Gauthier S, Guen FR, Wojcik L et al (2019) Synthesis and properties of novel pyranylidene-based organic sensitizers for dye- sensitized solar cells. Dye Pigment. https://doi.org/10.1016/j.dyepig.2019.107747. (PMID: 10.1016/j.dyepig.2019.107747) ; Durand RJ, Gauthier S, Achelle S et al (2017) Incorporation of a platinum center in pi-conjugated core of push-pull chromophores for Nonlinear Optics (NLO). Dalt Trans. https://doi.org/10.1039/C7DT00252A. (PMID: 10.1039/C7DT00252A) ; Gauthier S, Porter A, Achelle S et al (2018) Mono- and diplatinum polyynediyl complexes as potential push − pull chromophores: synthesis, characterization, TD-DFT modeling, and photophysical and NLO properties ́. Organometallics. https://doi.org/10.1021/acs.organomet.8b00223. (PMID: 10.1021/acs.organomet.8b00223) ; Gauthier S, Caro B, Guen FR et al (2014) Synthesis, photovoltaic performances and TD-DFT modeling of push–pull diacetylide platinum complexes in TiO2 based dye-sensitized solar cells. Dalt Trans. https://doi.org/10.1039/c4dt00301b. (PMID: 10.1039/c4dt00301b) ; Ferreira E, Le PP, Cabon N et al (2017) New D-π-A-conjugated organic sensitizers based on α-pyranylidene donors for dye-sensitized solar cells. Tetrahedron Lett. https://doi.org/10.1016/j.tetlet.2017.01.094. (PMID: 10.1016/j.tetlet.2017.01.094) ; Marco AB, Martínez de Baroja N, Andrés-Castán JM et al (2019) Pyranylidene/thienothiophene-based organic sensitizers for dye-sensitized solar cells. Dye Pigment 161:205–213. https://doi.org/10.1016/j.dyepig.2018.09.035. (PMID: 10.1016/j.dyepig.2018.09.035) ; Srinivas K, Yesudas K, Bhanuprakash K et al (2009) A combined experimental and computational investigation of anthracene based sensitizers for DSSC: comparison of cyanoacrylic and malonic acid electron withdrawing groups binding onto the TiO2 anatase (101) surface. J Phys Chem C 113:20117–20126. https://doi.org/10.1021/jp907498e. (PMID: 10.1021/jp907498e) ; Wiberg J, Marinado T, Hagberg DP et al (2009) Effect of anchoring group on electron injection and recombination dynamics in organic dye-sensitized solar cells. J Phys Chem C 113:3881–3886. (PMID: 10.1021/jp8101139) ; Gratzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788–1798. (PMID: 10.1021/ar900141y19715294) ; Chen SL, Yang LN, Li ZS (2013) How to design more efficient organic dyes for dye-sensitized solar cells? Adding more sp 2-hybridized nitrogen in the triphenylamine donor. J Power Sources 223:86–93. https://doi.org/10.1016/j.jpowsour.2012.09.053. (PMID: 10.1016/j.jpowsour.2012.09.053) ; Zheng Z, Shao Y, Ding C et al (2022) Rational design of ZL003-based organic dyes for highly efficient dye-sensitized solar cells: influence of alkynyl group and π-spacers on photovoltaic performance. J Mol Struct 1269:133728. https://doi.org/10.1016/j.molstruc.2022.133728. (PMID: 10.1016/j.molstruc.2022.133728) ; Arunkumar A, Shanavas S, Acevedo R, Anbarasan PM (2020) Quantum chemical investigation of modified coumarin-based organic efficient sensitizers for optoelectronic applications. Eur Phys J D 74. https://doi.org/10.1140/epjd/e2019-100246-9. ; Fan W, Deng W (2013) Incorporation of thiadiazole derivatives as π - spacer to construct efficient metal - free organic dye sensitizers for dye - sensitized solar cells: a theoretical study. Commun Comput Chem 1:152–170. https://doi.org/10.4208/cicc.2013.v1.n2.6. (PMID: 10.4208/cicc.2013.v1.n2.6) ; Sang-Aroon W, Saekow S, Amornkitbamrung V (2012) Density functional theory study on the electronic structure of Monascus dyes as photosensitizer for dye-sensitized solar cells. J Photochem Photobiol A Chem 236:35–40. https://doi.org/10.1016/j.jphotochem.2012.03.014. (PMID: 10.1016/j.jphotochem.2012.03.014) ; Ma W, Jiao Y, Meng S (2014) Predicting energy conversion efficiency of dye solar cells from first principles. J Phys Chem C 113:20117–20126. ; Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A02. Gaussian Inc, Wallingford. ; Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377. https://doi.org/10.1063/1.464304. (PMID: 10.1063/1.464304) ; Becke AD (1988) Density-fnnctional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. (PMID: 10.1103/PhysRevA.38.3098) ; Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785. https://doi.org/10.1103/PhysRevB.37.785. (PMID: 10.1103/PhysRevB.37.785) ; Fu Y, Lu T, Xu Y et al (2018) Theoretical screening and design of SM315-based porphyrin dyes for highly efficient dye-sensitized solar cells with near-IR light harvesting. Dye Pigment. https://doi.org/10.1016/j.dyepig.2018.03.045. (PMID: 10.1016/j.dyepig.2018.03.045) ; Li Y, Xu B, Song P et al (2017) D − A − π − a system: light harvesting, charge transfer, and molecular designing. J Phys Chem C 121:12546–12561. https://doi.org/10.1021/acs.jpcc.7b02328. (PMID: 10.1021/acs.jpcc.7b02328) ; Kumar V, Chetti P (2023) The impact of aromatic π-spacers and internal acceptors in triphenylamine dyes for DSSCs: a DFT approach. J Mol Graph Model 123:108512. https://doi.org/10.1016/j.jmgm.2023.108512. (PMID: 10.1016/j.jmgm.2023.10851237187040) ; Sun C, Li Y, Han J et al (2019) Enhanced photoelectrical properties of alizarin-based natural dye via structure modulation. Sol Energy 185:315–323. https://doi.org/10.1016/j.solener.2019.04.078. (PMID: 10.1016/j.solener.2019.04.078) ; Ren Z, Cao Y, Shang C, Sun C (2022) Evaluating the photoelectric performance of D-π-A dyes with different π-conjugated bridges for DSSCs. Chem Phys Lett 806:140035. https://doi.org/10.1016/j.cplett.2022.140035. (PMID: 10.1016/j.cplett.2022.140035) ; Britel O, Fitri A, TouimiBenjelloun A et al (2022) Theoretical design of new carbazole based organic dyes for DSSCs applications. A DFT/TD-DFT insight. J Photochem Photobiol A Chem 429:113902. https://doi.org/10.1016/j.jphotochem.2022.113902. (PMID: 10.1016/j.jphotochem.2022.113902) ; Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592. (PMID: 10.1002/jcc.2288522162017) ; Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 7756:7756–7764. https://doi.org/10.1063/1.1316015. (PMID: 10.1063/1.1316015) ; Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517. https://doi.org/10.1063/1.458452. (PMID: 10.1063/1.458452) ; Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. (PMID: 10.1103/PhysRevLett.77.386510062328) ; Benedek NA, Snook IK, Latham K, Yarovsky I (2014) Application of numerical basis sets to hydrogen bonded systems: a density functional theory study. J Chem Phys 122:144102–144110. https://doi.org/10.1063/1.1876152. (PMID: 10.1063/1.1876152) ; Etabti H, Fitri A, Benjelloun AT et al (2021) Benzocarbazole - based D – Di – π – A dyes for DSSCs: on the performance of free dye and dye – TiO 2 interface. Res Chem Intermed. https://doi.org/10.1007/s11164-021-04531-6. (PMID: 10.1007/s11164-021-04531-6) ; Hachi M, Slimi A, Fitri A et al (2020) New small organic molecules based on thieno[2,3-b]indole for efficient bulk heterojunction organic solar cells: a computational study. Mol Phys 118. https://doi.org/10.1080/00268976.2019.1662956. ; Estrella LL, Balanay MP, Kim DH (2018) Theoretical insights into D-D-π-A sensitizers employing N -annulated perylene for dye-sensitized solar cells. J Phys Chem A 122:6328–6342. https://doi.org/10.1021/acs.jpca.8b03331. (PMID: 10.1021/acs.jpca.8b0333129995411) ; Wazzan N, Irfan A (2018) Theoretical study of triphenylamine-based organic dyes with mono-, di-, and tri-anchoring groups for dye-sensitized solar cells. Org Electron 63:328–342. https://doi.org/10.1016/j.orgel.2018.09.039. (PMID: 10.1016/j.orgel.2018.09.039) ; Andijani N, Al-Qurashi O, Wazzan N, Irfan A (2019) Modeling of efficient pyrene-core substituted with electron-donating groups as hole-transporting materials in perovskite solar cells. Sol Energy 188:898–912. https://doi.org/10.1016/j.solener.2019.06.074. (PMID: 10.1016/j.solener.2019.06.074) ; Wazzan N, Irfan A (2020) Promising architectures modifying the D-π-A architecture of 2,3-dipentyldithieno[3,2-f:2′,3′-h]quinoxaline-based dye as efficient sensitizers in dye-sensitized solar cells: a DFT study. Mater Sci Semicond Process 120:105260. https://doi.org/10.1016/j.mssp.2020.105260. (PMID: 10.1016/j.mssp.2020.105260) ; Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522. (PMID: 10.1063/1.478522) ; Avcı D, Bahçeli S, Tamer Ö, Atalay Y (2015) Comparative study of DFT/B3LYP, B3PW91, and HSEH1PBE methods applied to molecular structures and spectroscopic and electronic properties of flufenpyr and amipizone. Can J Chem 3:1147–1156. (PMID: 10.1139/cjc-2015-0176) ; Li P, Wang Z, Zhang H (2019) Rigidified and expanded N-annulated perylenes as efficient donors in organic sensitizers for application in solar cells. PhysChemChemPhys 21:10488–10496. https://doi.org/10.1039/c9cp00779b. (PMID: 10.1039/c9cp00779b) ; Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011. (PMID: 10.1016/j.cplett.2004.06.011) ; Ernzerhof M, Scuseria GE (1999) Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional. J Chem Phys 110:5029–5036. https://doi.org/10.1063/1.478401. (PMID: 10.1063/1.478401) ; Sun K, Ma Y, Zhang W et al (2016) New carbazole-based dyes with asymmetric butterfly structure for dye-sensitized solar cells: design and properties studies. Dye Pigment. https://doi.org/10.1016/j.dyepig.2016.11.051. (PMID: 10.1016/j.dyepig.2016.11.051) ; ElKhattabi S, Hachi M, Fitri A et al (2019) Theoretical study of the effects of modifying the structures of organic dyes based on N,N-alkylamine on their efficiencies as DSSC sensitizers. J Mol Model 25. https://doi.org/10.1007/s00894-018-3888-0. ; Li Y, Liu J, Liu D et al (2019) D-A-π-A based organic dyes for efficient DSSCs: a theoretical study on the role of π-spacer. Comput Mater Sci 161:163–176. https://doi.org/10.1016/j.commatsci.2019.01.033. (PMID: 10.1016/j.commatsci.2019.01.033) ; Patil DS, Avhad KC, Sekar N (2018) Linear correlation between DSSC efficiency, intramolecular charge transfer characteristics, and NLO properties – DFT approach. Comput Theor Chem 1138:75–83. https://doi.org/10.1016/j.comptc.2018.06.006. (PMID: 10.1016/j.comptc.2018.06.006) ; Balanay MP, Kim DH (2011) Optical properties of porphyrin analogues for solar cells: an NLO approach. Curr Appl Phys 11:109–116. https://doi.org/10.1016/j.cap.2010.06.028. (PMID: 10.1016/j.cap.2010.06.028) ; Xie M, Wang J, Xia H-Q et al (2015) Theoretical studies on the spectroscopic properties of porphyrin derivatives for dye-sensitized solar cells application. RSC Adv. https://doi.org/10.1039/b000000x. (PMID: 10.1039/b000000x) ; Zhang J, Zhu H, Zhong R et al (2018) Promising heterocyclic anchoring groups with superior adsorption stability and improved IPCE for high-e ffi ciency noncarboxyl dye sensitized solar cells: a theoretical study. Org Electron 54:104–113. https://doi.org/10.1016/j.orgel.2017.12.023. (PMID: 10.1016/j.orgel.2017.12.023) ; Marcus RA (1964) Chemical and electrochemical electron-transfer theory. Annu Rev Phys Chem 15:155–196. (PMID: 10.1146/annurev.pc.15.100164.001103) ; Lu T, Li W, Chen J et al (2018) Promising pyridinium ylide based anchors towards high-ef fi ciency dyes for dye-sensitized solar cells applications: insights from theoretical investigations. Electrochim Acta 283:1798–1805. https://doi.org/10.1016/j.electacta.2018.07.108. (PMID: 10.1016/j.electacta.2018.07.108) ; Chaitanya K, Ju X, Heron BM (2014) Theoretical study on the light harvesting e ffi ciency of zinc porphyrin sensitizers for DSSCs. RSC Adv 4:26621–26634. https://doi.org/10.1039/c4ra02473g. (PMID: 10.1039/c4ra02473g) ; Fan W, Tan D, Deng W (2012) Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study. ChemPhysChem 116024:1–11. https://doi.org/10.1002/cphc.201200064. (PMID: 10.1002/cphc.201200064) ; Li Y, Li X, Xu Y (2020) Theoretical screening of high-e ffi ciency sensitizers with D- π -A framework for DSSCs by altering promising donor group. Sol Energy 196:146–156. https://doi.org/10.1016/j.solener.2019.11.092. (PMID: 10.1016/j.solener.2019.11.092) ; Pastore M, De AF (2012) Computational modelling of TiO 2 surfaces sensitized by organic dyes with different anchoring groups : adsorption modes, electronic structure and implication for electron injection / recombination. Phys Chem Chem Phys 14:920–928. https://doi.org/10.1039/c1cp22663k. (PMID: 10.1039/c1cp22663k22120155) ; Lee KE, Gomez MA, Elouatik S, Demopoulos GP (2010) Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO 2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging. Langmuir 26:9575–9583. https://doi.org/10.1021/la100137u. (PMID: 10.1021/la100137u20429522) ; Lin C, Xia Q, Li K et al (2018) Theoretical study of ultrafast electron injection into a dye / TiO 2 system in dye-sensitized solar cells. J Korean Phys Soc 72:1307–1312. https://doi.org/10.3938/jkps.72.1307. (PMID: 10.3938/jkps.72.1307) ; Aziz SG, Hilal RH, Osman OI et al (2018) Proton-coupled electron transfer in dye-sensitized solar cells: a theoretical perspective. Struct Chem 29:983–997.
  • Contributed Indexing: Keywords: DFT; DSSC; NLO; Pyranylidene; TD-DFT
  • Entry Date(s): Date Created: 20231109 Latest Revision: 20231206
  • Update Code: 20231215

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -