Zum Hauptinhalt springen

Consistency of Faraday cup and ionization chamber dosimetry of proton fields and the role of nuclear interactions.

Wulff, J ; Paul, A ; et al.
In: Medical physics, Jg. 51 (2024-03-01), Heft 3, S. 2277-2292
Online academicJournal

Titel:
Consistency of Faraday cup and ionization chamber dosimetry of proton fields and the role of nuclear interactions.
Autor/in / Beteiligte Person: Wulff, J ; Paul, A ; Bäcker, CM ; Baumann, KS ; Esser, JN ; Koska, B ; Timmermann, B ; Verbeek, NG ; Bäumer, C
Link:
Zeitschrift: Medical physics, Jg. 51 (2024-03-01), Heft 3, S. 2277-2292
Veröffentlichung: 2017- : Hoboken, NJ : John Wiley and Sons, Inc. ; <i>Original Publication</i>: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics., 2024
Medientyp: academicJournal
ISSN: 2473-4209 (electronic)
DOI: 10.1002/mp.16819
Schlagwort:
  • Radiometry methods
  • Computer Simulation
  • Calibration
  • Monte Carlo Method
  • Radiotherapy Dosage
  • Protons
  • Proton Therapy
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Med Phys] 2024 Mar; Vol. 51 (3), pp. 2277-2292. <i>Date of Electronic Publication: </i>2023 Nov 22.
  • MeSH Terms: Protons* ; Proton Therapy* ; Radiometry / methods ; Computer Simulation ; Calibration ; Monte Carlo Method ; Radiotherapy Dosage
  • References: Andreo P, Burns D, Hohlfeld K, et al. TRS-398: Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. IAEA; 2004. ; DeLuca P, Wambersie A, Seltzer S, Dawson P. ICRU Report 78. Prescribing, recording, and reporting proton-beam therapy. J ICRU. 2007;7:29-48. ; Karger CP, Jäkel O, Palmans H, Kanai T. Dosimetry for ion beam radiotherapy. Phys Med Biol. 2010;55:R193. ; Palmans H, Lourenço A, Medin J, Vatnitsky SM, Andreo P. Current best estimates of beam quality correction factors for reference dosimetry of clinical proton beams. Phys Med Biol. 2022;67:195012. ; Vedelago J, Karger CP, Jäkel O. A review on reference dosimetry in radiation therapy with proton and light ion beams: status and impact of new developments. Radiat Meas. 2022;157:106844. ; Lyman JT, Awschalom M, Berardo PA, et al. Protocol for heavy charged-particle therapy beam dosimetry. American Association of Physics in Medicine. Report No. 16 (1986). ; Diffenderfer ES, Verginadis II, Kim MM, et al. Design, implementation, and in vivo validation of a Novel Proton FLASH radiation therapy system. Int J Radiat Oncol Biol Phys. 2020;106:440-448. ; Darafsheh A, Hao Y, Zwart T, et al. Feasibility of proton FLASH irradiation using a synchrocyclotron for preclinical studies. Med Phys. 2020;47:4348-4355. ; Winterhalter C, Togno M, Nesteruk K, et al. Faraday cup for commissioning and quality assurance for proton pencil beam scanning beams at conventional and ultra-high dose rates. Phys Med Biol. 2021;66:124001. ; Togno M, Nesteruk KP, Schäfer R, et al. Ultra-high dose rate dosimetry for pre-clinical experiments with mm-small proton fields. Phys Med. 2022;104:101-111. ; Palmans H, Vatnitsky SM. Comment on ‘Proton beam monitor chamber calibration'. Phys Med Biol. 2016;61:6585. ; DIN 6801-1:2019-09: Dosismessverfahren nach der Sondenmethode für Protonen- und Ionenstrahlung - Teil 1: Ionisationskammern, DIN-Normenausschuss Radiologie, DIN Deutsches Institut für Normung e.V., Berlin, Germany. https://doi.org/10.31030/3038366. ; Palmans H, Medin J, Vynckier S, et al. Reference Dosimetry of Scanned Proton Beams-State of the Art. Book of Extended Synopses, IDOS; 2019:120-122. ; Andreo P, Burns D, Kapsch R, McEwen M, Vatnitsky S. Status of the Update of the IAEA TRS-398 Code of Practice. Book of Extended Synopses, IDOS; 2019:71. ; Gottschalk B, Cascio EW, Daartz J, Wagner MS. On the nuclear halo of a proton pencil beam stopping in water. Phys Med Biol. 2015;60:5627-5654. ; Grusell E. On the definition of absorbed dose. Radiat Phys Chem. 2015;107:131-135. ; Palmans H, Vatnitsky SM. Beam monitor calibration in scanned light-ion beams. Med Phys. 2016;43:5835-5847. ; Gomà C, Safai S, Vörös S. Reference dosimetry of proton pencil beams based on dose-area product: a proof of concept. Phys Med Biol. 2017;62:4991-5005. ; Zhu L, Zhang M, Xiang X, Wang X. Dose-area product determination and beam monitor calibration for the fixed beam of the Shanghai advanced proton therapy facility. Appl Sci. 2022;12(9):4111. ; Osorio J, Dreindl R, Grevillot L, et al. Monitor calibration of a synchrotron-based scanned light-ion beam delivery system. Z Med Phys. 2021;31:154-165. Special Issue: Ion Beam Therapy, Part I. ; Sawakuchi GO, Zhu XR, Poenisch F, et al. Experimental characterization of the low-dose envelope of spot scanning proton beams. Phys Med Biol. 2010;55:3467. ; Bäumer C, Koska B, Lambert J, Timmermann B, Mertens T, Talla PT. Evaluation of detectors for acquisition of pristine depth-dose curves in pencil beam scanning. J Appl Clin Med Phys. 2015;16(6):151163. ; Kuess P, Haupt S, Osorio J, et al. Characterization of the PTW-34089 type 147 mm diameter large-area ionization chamber for use in light-ion beams. Phys Med Biol. 2020;65:17NT02. ; ICRU. Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Measurement Standards and Applications. ICRU Report 90, Journal of the International Commission on Radiation Units and Measurements. 2014;14. ; Kern A, Bäumer C, Kröninger K., et al. Determination of surface dose in pencil beam scanning proton therapy. Med Phys. 2020;47:2277-2288. ; Tanaka M, Girard G, Davis R, Peuto A, Bignell N. Recommended table for the density of water between 0 ∘$^\circ$C and 40 ∘$^\circ$C based on recent experimental reports. Metrologia. 2001;38:301. ; Grusell E, Isacsson U, Montelius A, Medin J. Faraday cup dosimetry in a proton therapy beam without collimation. Phys Med Biol. 1995;40:1831. ; Janni JF. Energy loss, range, path length, time-of-ight, straggling, multiple scattering, and nuclear interaction probability: In two parts. Part 1. For 63 compounds Part 2. For elements 1 ≤$\le$ Z ≤$\le$ 92. At Data Nucl Data Tables. 1982;27:341-529. ; ICRU. Stopping powers and ranges for protons and alpha particles. ICRU Report 49, Journal of the International Commission on Radiation Units and Measurements. 1993:25. ; Verhey LJ, Koehler AM, McDonald JC, et al. The determination of absorbed dose in a proton beam for purposes of charged-particle radiation therapy. Radiat Res. 1979;79:34-54. ; Delacroix S, Bridier A, Mazal A, et al. Proton dosimetry comparison involving ionometry and calorimetry. Int J Radiat Oncol Biol Phys. 1997;37:711-718. ; Cuttone G, et al. First dosimetry intercomparison results for the CATANA project. Physica Med. 1999;15:121-130. ; Jones A, Bloch C, Hall E, et al. Comparison of Indiana University Cyclotron Facility Faraday cup proton dosimetry with radiochromic films, a calorimeter, and a calibrated ion chamber. IEEE Trans Nucl Sci. 1999;46:1762-1765. ; Bäumer C, Ackermann B, Hillbrand M, et al. Dosimetry intercomparison of four German proton therapy institutions employing spot scanning. Z Med Phys. 2017;27:80-85. ; Bäumer C, Farr JB. Lateral dose profile characterization in scanning particle therapy. Med Phys. 2011;38:2904-2913. ; Verbeek N, Wulff J, Bäumer C, Smyczek S, Timmermann B, Brualla L. Single pencil beam benchmark of a module for Monte Carlo simulation of proton transport in the PENELOPE code. Med Phys. 2021;48:456-476. ; Farah J, Mares V, Romero-Expósito M, et al. Measurement of stray radiation within a scanning proton therapy facility: EURADOS WG9 intercomparison exercise of active dosimetry systems. Med Phys. 2015;42:2572-2584. ; Trinkl S, Mares V, Englbrecht FS, et al. Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. Med Phys. 2017;44:1912-1920. ; De Saint-Hubert M, Verbeek N, Bäumer C, et al. Validation of a Monte Carlo framework for out-of-field dose calculations in proton therapy. Front Oncol. 2022;12:882489. ; Faddegon B, Ramos-Mendez J, Schuemann J, McNamara A, Shin J, Perl J, Paganetti H. The TOPAS Tool for Particle Simulation, a Monte Carlo Simulation Tool for Physics, Biology and Clinical Research, Physica Medica, doi:https://doi.org/10.1016/j.ejmp.2020.03.019. ; Perl J, Shin J, Schumann J, Faddegon B, Paganetti H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Med Phys. 2012;39(11):6818-6837. ; Ehwald J, Togno M, Lomax AJ, Weber DC, Safai S, Winterhalter C. Detailed Monte-Carlo characterization of a Faraday cup for proton therapy. Med Phys. 2023;50(9):5828-5841. ; Courtois C, Boissonnat G, Brusasco C, et al. Characterization and performances of a monitoring ionization chamber dedicated to IBA-universal irradiation head for Pencil Beam Scanning. Nucl Instrum Methods Phys Res A: Accel Spectrom Detect Assoc Equip. 2014;736:112-117. ; Zhu XR, Poenisch F, Lii M, et al. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Med Phys. 2013;40:041723. ; Kugel F, Wulff J, Bäumer C, et al. Validating a double Gaussian source model for small proton fields in a commercial Monte-Carlo dose calculation engine. Z Med Phys. 2022;S0939-3889(22)00132-5. ; Peterson S, Polf J, Ciangaru G, Frank SJ, Bues M, Smith A. Variations in proton scanned beam dose delivery due to uncertainties in magnetic beam steering. Med Phys. 2009;36:3693-3702. ; Medin J, Andreo P, Palmans H. Experimental determination of kQ$_Q$ factors for two types of ionization chambers in scanned proton beams. Phys Med Biol. 2022;67:055001. ; Eaton JW, Bateman D, Hauberg S, Wehbring R. GNU Octave manual: a high-level interactive language for numerical computations, 2021. ; Pelliccioni M. Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code. Radiat Prot Dosim. 2000;88:279-297. ; Englbrecht FS, Trinkl S, Mares V, et al. A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room. Z Med Phys. 2021;31:215-228. Special Issue: Ion Beam Therapy, Part I. ; Koning A, Rochman D, Sublet J-C, Dzysiuk N, Fleming M, van der Marck S. TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets. 2019;155:1-55. Special Issue on Nuclear Reaction Data. ; Gomà C, Lorentini S, Meer D, Safai S. Proton beam monitor chamber calibration. Phys Med Biol. 2014;59:4961. ; Lin S, Boehringer T, Coray A, Grossmann M, Pedroni E. More than 10 years experience of beam monitoring with the Gantry 1 spot scanning proton therapy facility at PSI. Med Phys. 2009;36:5331-5340. ; Winterhalter C, Fura E, Tian Y, et al. Validating a Monte Carlo approach to absolute dose quality assurance for proton pencil beam scanning. Phys Med Biol. 2018;63:175001. ; Cascio EW, Gottschalk B. A simplified vacuumless Faraday Cup for the experimental beamline at the Francis H. Burr Proton Therapy Center. In: IEEE Radiation Effects Data Workshop. IEEE; 2009:161-165. ; Clasie B, Depauw N, Fransen M. et al. Golden beam data for proton pencil-beam scanning. Phys Med Biol. 2012;57:1147. ; Cambria R, Hérault J, Brassart N, Silari M, Chauvel P. Proton beam dosimetry: a comparison between the Faraday cup and an ionization chamber. Phys Med Biol. 1997;42:1185. ; Sorriaux J, Testa M, Paganetti H, et al. Consistency in quality correction factors for ionization chamber dosimetry in scanned proton beam therapy. Med Phys. 2017;44:4919-4927. ; Moyers MF, Coutrakon GB, Ghebremedhin A, Shahnazi K, Koss P, Sanders E. Calibration of a proton beam energy monitor. Med Phys. 2007;34:1952-1966. ; Vignati A, Mas Milian F, Shakarami Z, et al. Calibration method and performance of a time-of-flight detector to measure absolute beam energy in proton therapy. Med Phys. 2023;50(9):5817-5827. ; Paganetti H, Gottschalk B. Test of GEANT3 and GEANT4 nuclear models for 160 MeV protons stopping in CH2$_2$. Med Phys. 2003;30:1926-1931. ; Hall DC, Makarova A, Paganetti H, Gottschalk B. Validation of nuclear models in Geant4 using the dose distribution of a 177 MeV proton pencil beam. Phys Med Biol. 2015;61:N1-N10. ; Battistoni G, Toppi M, Patera V, The FOOT Collaboration. Measuring the impact of nuclear interaction in particle therapy and in radio protection in space: the FOOT experiment. Front Phys. 2021;8. ; Verburg JM, Seco J. Proton range verification through prompt gamma-ray spectroscopy. Phys Med Biol. 2014;59:7089. ; Verburg JM, Shih HA, Seco J. Simulation of prompt gamma-ray emission during proton radiotherapy. Phys Med Biol. 2012;57:5459-5472. ; Jeyasugiththan J, Peterson SW. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy. Phys Med Biol. 2015;60:7617-7635. ; Wrońska A, Kasper J, Ahmed AA, et al. Prompt-gamma emission in GEANT4 revisited and confronted with experiment. Physica Med. 2021;88:250-261. ; Kuess P, Böhlen TT, Lechner W, Elia A, Georg D, Palmans H. Lateral response heterogeneity of Bragg peak ionization chambers for narrow-beam photon and proton dosimetry. Phys Med Biol. 2017;62:9189. ; Bäumer C, Bäcker CM, Gerhardt M, et al. Measurement of absolute activation cross sections from carbon and aluminum for proton therapy. Nucl Instrum Methods Phys Res B. 2019;440:75-81. ; Lourenço A, Subiel A, Lee N, et al. Absolute dosimetry for FLASH proton pencil beam scanning radiotherapy. Sci Rep. 2023;13:2054. ; Schüller A, Heinrich S, Fouillade C, et al. The European Joint Research Project UHDpulse - Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Med. 2020;80:134-150. ; Romano F, Subiel A, McManus M, et al. Challenges in dosimetry of particle beams with ultra-high pulse dose rates. J Phys Conf Ser. 2020;1662:012028. ; Palmans H. SP-0231 IAEA TRS 398: Update for modern radiotherapy. Radiother Oncol. 2021;161:159.
  • Grant Information: 847707 EU Horizon 2020
  • Contributed Indexing: Keywords: Faraday cup; proton therapy; reference dosimetry
  • Substance Nomenclature: 0 (Protons)
  • Entry Date(s): Date Created: 20231122 Date Completed: 20240313 Latest Revision: 20240313
  • Update Code: 20240313

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -