Zum Hauptinhalt springen

Epigenetic programming for obesity and noncommunicable disease: From womb to tomb.

Saavedra, LPJ ; Piovan, S ; et al.
In: Reviews in endocrine & metabolic disorders, Jg. 25 (2024-04-01), Heft 2, S. 309-324
Online academicJournal

Titel:
Epigenetic programming for obesity and noncommunicable disease: From womb to tomb.
Autor/in / Beteiligte Person: Saavedra, LPJ ; Piovan, S ; Moreira, VM ; Gonçalves, GD ; Ferreira, ARO ; Ribeiro, MVG ; Peres, MNC ; Almeida, DL ; Raposo, SR ; da Silva MC ; Barbosa, LF ; de Freitas Mathias PC
Link:
Zeitschrift: Reviews in endocrine & metabolic disorders, Jg. 25 (2024-04-01), Heft 2, S. 309-324
Veröffentlichung: 2005-: Heidelberg : Springer ; <i>Original Publication</i>: Boston : Kluwer Academic Publishers, c2000-, 2024
Medientyp: academicJournal
ISSN: 1573-2606 (electronic)
DOI: 10.1007/s11154-023-09854-w
Schlagwort:
  • Female
  • Adult
  • Humans
  • Obesity genetics
  • Disease Susceptibility
  • Uterus
  • Epigenesis, Genetic
  • Noncommunicable Diseases epidemiology
  • Noncommunicable Diseases prevention & control
  • Prenatal Exposure Delayed Effects genetics
  • Prenatal Exposure Delayed Effects prevention & control
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Review
  • Language: English
  • [Rev Endocr Metab Disord] 2024 Apr; Vol. 25 (2), pp. 309-324. <i>Date of Electronic Publication: </i>2023 Dec 02.
  • MeSH Terms: Noncommunicable Diseases* / epidemiology ; Noncommunicable Diseases* / prevention & control ; Prenatal Exposure Delayed Effects* / genetics ; Prenatal Exposure Delayed Effects* / prevention & control ; Female ; Adult ; Humans ; Obesity / genetics ; Disease Susceptibility ; Uterus ; Epigenesis, Genetic
  • References: Kermack WO, McKendrick AG, McKinlay PL. Death-rates in great britain and sweden: expression of specific mortality rates as products of two factors, and some consequences thereof. J Hyg (Lond) [Internet]. 1934[cited 2022 May 22];34:433–57. https://doi.org/10.1017/S0022172400043230 . ; Nettle D, Bateson M. Adaptive developmental plasticity: what is it, how can we recognize it and when can it evolve? Proc R Soc B Biol Sci [Internet]. 2015[cited 2022 May 22];282:1–9. https://doi.org/10.1098/rspb.2015.1005 . ; Hanson MA, Gluckman PD. Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev [Internet]. 2014[cited 2021 Mar 27];94:1027–76. https://doi.org/10.1152/physrev.00029.2013 . ; Suzuki K. The developing world of DOHaD. J Dev Orig Health Dis [Internet]. 2018;9:266–9. https://doi.org/10.1017/S2040174417000691 . (PMID: 10.1017/S204017441700069128870276) ; Deichmann U. Epigenetics: The origins and evolution of a fashionable topic. Dev Biol [Internet]. 2016[cited 2022 May 20];416:249–54. https://doi.org/10.1016/j.ydbio.2016.06.005 . ; Noble D. Conrad Waddington and the origin of epigenetics. J Exp Biol [Internet]. 2015[cited 2022 May 20];218:816–8. https://doi.org/10.1242/jeb.120071 . ; de Sousa MC, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci [Internet]. 2019[cited 2022 May 22];20:1–22. https://doi.org/10.3390/ijms20246249 . ; Godfrey KM, Costello PM, Lillycrop KA. Development, epigenetics and metabolic programming. Nestle Nutr Inst Workshop Ser [Internet]. 2016[cited 2022 May 22];85:71–80. https://doi.org/10.1159/000439488 . ; Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, et al. Origins of lifetime health around the time of conception: causes and consequences. Lancet [Internet]. 2018[cited 2022 May 19];391:1842–52. https://doi.org/10.1016/S0140-6736(18)30312-X . ; Lancet. Campaigning for preconception health. Lancet [Internet]. 2018[cited 2022 May 20];391:1749. https://doi.org/10.1016/S0140-6736(18)30981-4 . ; Hales BF, Grenier L, Lalancette C, Robaire B. Epigenetic programming: From gametes to blastocyst. Birth Defects Res Part A Clin Mol Teratol [Internet]. 2011[cited 2022 May 20];91:652–65. https://doi.org/10.1002/bdra.20781 . ; Wasserzug-Pash P, Klutstein M. Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphor. Chromosoma [Internet]. 2019[cited 2022 May 21];128:423–441. https://doi.org/10.1007/s00412-019-00704-w . ; Daxinger L, Whitelaw E. Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet [Internet]. 2012[cited 2022 May 19];13:153–62. https://doi.org/10.1038/nrg3188 . ; Hill PWS, Leitch HG, Requena CE, Sun Z, Amouroux R, Roman-Trufero M, et al. Epigenetic reprogramming enables the transition from primordial germ cell to gonocyte. Nature [Internet]. 2018[cited 2022 May 20];555:392–6. https://doi.org/10.1038/nature25964 . ; Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology [Internet]. 2020[cited 2022 May 21];8:924–42. https://doi.org/10.1111/andr.12753 . ; Le Blévec E, Muroňová J, Ray PF, Arnoult C. Paternal epigenetics: mammalian sperm provide much more than DNA at fertilization. Mol Cell Endocrinol [Internet]. 2020[cited 2022 May 20];518:1–16. https://doi.org/10.1016/j.mce.2020.110964 . ; Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia [Internet]. 2021[cited 2022 May 20];53:1–15. https://doi.org/10.1111/and.13586 . ; Funaya S, Ooga M, Suzuki MG, Aoki F. Linker histone H1FOO regulates the chromatin structure in mouse zygotes. FEBS Lett [Internet]. 2018[cited 2022 May 20];592:2414–24. https://doi.org/10.1002/1873-3468.13175 . ; Smallwood SA, Tomizawa SI, Krueger F, Ruf N, Carli N, Segonds-Pichon A, et al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet [Internet]. 2011[cited 2022 May 21];43:811–4. https://doi.org/10.1038/ng.864 . ; Wei Y, Schatten H, Sun QY. Environmental epigenetic inheritance through gametes and implications for human reproduction. Hum Reprod Update [Internet]. 2015[cited 2022 May 21];21:194–208. https://doi.org/10.1093/humupd/dmu061 . ; Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. PNAS [Internet]. 2008[cited 2022 May 20];105:17046–9. https://doi.org/10.1073/pnas.0806560105 . ; Whitaker KL, Jarvis MJ, Beeken RJ, Boniface D, Wardle J. Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. Am J Clin Nutr [Internet]. 2010[cited 2022 May 21];91:1560–7. https://doi.org/10.3945/ajcn.2009.28838 . ; Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC, et al. DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect [Internet]. 2014[cited 2022 May 20];122:159–64. https://doi.org/10.1289/ehp.1307047 . ; Gorla-Bajszczak A, Juge-Aubry C, Pernin A, Burger AG, Meier CA. Conserved amino acids in the ligand-binding and τ(i) domains of the peroxisome proliferator-activated receptor α are necessary for heterodimerization with RXR. Mol Cell Endocrinol [Internet]. 1999[cited 2022 May 20];147:37–47. https://doi.org/10.1016/S0303-7207(98)00217-2 . ; Rigano D, Sirignano C, Taglialatela-scafati O. The potential of natural products for targeting PPAR α. Acta Pharm Sin B [Internet]. 2017[cited 2022 May 21];7:427–38. https://doi.org/10.1016/j.apsb.2017.05.005 . ; Portha B, Grandjean V, Movassat J. Mother or father: who is in the front line? Mechanisms underlying the non-genomic transmission of obesity/diabetes via the maternal or the paternal line. Nutrients [Internet]. 2019[cited 2022 May 16];11:1–23. https://doi.org/10.3390/nu11020233 . ; Franklin TB, Russig H, Weiss IC, Grff J, Linder N, Michalon A, et al. Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry [Internet]. 2010[cited 2022 May 20];68:408–15. https://doi.org/10.1016/j.biopsych.2010.05.036 . ; Luderer U, Eskenazi B, Hauser R, Korach KS, McHale CM, Moran F, et al. Proposed key characteristics of female reproductive toxicants as an approach for organizing and evaluating mechanistic data in hazard assessment. Environ Health Perspect [Internet]. 2019[cited 2022 May 20];127:075001-1-075001–14. https://doi.org/10.1289/EHP4971 . ; Stephenson J, Heslehurst N, Hall J, Schoenaker DAJM, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. Lancet [Internet]. 2018[cited 2022 May 21];391:1830–41. https://doi.org/10.1016/S0140-6736(18)30311-8 . ; Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science [Internet]. 2016;351:397–400. http://www.ncbi.nlm.nih.gov/pubmed/26721680 . ; Sarker G, Sun W, Rosenkranz D, Pelczar P, Opitz L, Efthymiou V, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs. Proc Natl Acad Sci [Internet]. 2019;116:10547–56.  https://pnas.org/doi/full/10.1073/pnas.1820810116 . ; Pentecost M, Meloni M. “It’s never too early”: preconception care and postgenomic models of life. Front Sociol [Internet]. 2020[cited 2022 May 21];5:1–13. https://doi.org/10.3389/fsoc.2020.00021 . ; Barker DJP, Eriksson JG, Forsén TJ, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol [Internet]. 2002[cited 2022 May 16];31:1235–9. https://doi.org/10.1093/ije/31.6.1235 . ; Barker DJP. Developmental origins of adult health and disease. J Epidemiol Community Heal [Internet]. 2004[cited 2021 Feb 22];58:114–5. https://doi.org/10.1136/jech.58.2.114 . ; Lillycrop KA, Phillips ES, Jackson AA, Hanson MA, Burdge GC. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring. J Nutr [Internet]. 2005[cited 2022 May 20];135:1382–6. https://doi.org/10.1093/jn/135.6.1382 . ; McCormick CM, Smythe JW, Sharma S, Meaney MJ. Sex-specific effects of prenatal stress on hypothalamic-pituitary-adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Dev Brain Res [Internet]. 1995[cited 2022 May 21];84:55–61. https://doi.org/10.1016/0165-3806(94)00153-Q . ; Liu L, Li A, Matthews SG. Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am J Physiol Endocrinol Metab [Internet]. 2001[cited 2022 May 20];280:E729–39. https://doi.org/10.1152/ajpendo.2001.280.5.e729 . ; Ravelli ACJ, Van Der Meulen JHP, Michels RPJ, Osmond C, Barker DJP, Hales CN, et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet [Internet]. 1998[cited 2022 Sep 13];351:173–7. https://doi.org/10.1016/S0140-6736(97)07244-9 . ; De Oliveira JC, Gomes RM, Miranda RA, Barella LF, Malta A, Martins IP, et al. Protein restriction during the last third of pregnancy malprograms the neuroendocrine axes to induce metabolic syndrome in adult male rat offspring. Endocrinology [Internet]. 2016[cited 2022 May 19];157:1799–812. https://doi.org/10.1210/en.2015-1883 . ; Zambrano E, Bautista CJ, Deás M, Martínez-Samayoa PM, González-Zamorano M, Ledesma H, et al. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol [Internet]. 2006[cited 2022 May 21];571:221–30. https://doi.org/10.1113/jphysiol.2005.100313 . ; Rossini KF, de Oliveira CA, Rebelato HJ, Esquisatto MAM, Catisti R. Gestational protein restriction increases cardiac connexin 43 mRNA levels in male adult rat offspring. Arq Bras Cardiol [Internet]. 2017[cited 2022 May 21];109:63–70. https://doi.org/10.5935/abc.20170081 . ; Assalin HB, Gontijo JAR, Boer PA. MiRNAs, target genes expression and morphological analysis on the heart in gestational protein-restricted offspring. PLoS ONE [Internet]. 2019[cited 2022 May 16];14:1–20. https://doi.org/10.1371/journal.pone.0210454 . ; Jousse C, Muranishi Y, Parry L, Montaurier C, Even P, Launay JM, et al. Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity. PLoS ONE [Internet]. 2014;9:1–9. https://doi.org/10.1371/journal.pone.0104896 . (PMID: 10.1371/journal.pone.0104896) ; Romaine SPR, Tomaszewski M, Condorelli G, Samani NJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart [Internet]. 2015[cited 2022 May 21];101:921–8. https://doi.org/10.1136/heartjnl-2013-305402 . ; Theys N, Bouckenooghe T, Ahn MT, Remacle C, Reusens B. Maternal low-protein diet alters pancreatic islet mitochondrial function in a sex-specific manner in the adult rat. Am J Physiol Regul Integr Comp Physiol [Internet]. 2009[cited 2022 May 21];297:1516–25. https://doi.org/10.1152/ajpregu.00280.2009 . ; Siqueira FR, Furukawa LNS, Oliveira IB, Heimann JC. Glucose metabolism and hepatic Igf1 DNA methylation are altered in the offspring of dams fed a low-salt diet during pregnancy. Physiol Behav [Internet]. 2016[cited 2022 May 21];154:68–75. https://doi.org/10.1016/j.physbeh.2015.11.013 . ; Desai M, Jellyman JK, Han G, Beall M, Lane RH, Ross MG. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J Obstet Gynecol [Internet]. 2014[cited 2022 May 19];211:237.e1–13. https://doi.org/10.1016/j.ajog.2014.03.025 . ; Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: Epidemiology, mechanisms, and lifelong effect. Lancet [Internet]. 2016[cited 2022 May 21];387:475–90. https://doi.org/10.1016/S0140-6736(15)01024-7 . ; Gomes RM, Bueno FG, Oliveira, Francisco FA, Moreira VM, Divino M, et al. Maternal diet-induced obesity during suckling period programs offspring obese phenotype and hypothalamic leptin/insulin resistance. J Nutr Biochem [Internet]. 2018[cited 2022 May 20];61:24–32. https://doi.org/10.1016/j.jnutbio.2018.07.006 . ; Almeida DL, Pavanello A, Saavedra LP, Pereira TS, De Castro-Prado MAA, De Freitas Mathias PC. Environmental monitoring and the developmental origins of health and disease. J Dev Orig Health Dis [Internet]. 2019[cited 2022 May 7];10:608–15. https://pubmed.ncbi.nlm.nih.gov/31130151/ . ; Butruille L, Marousez L, Pourpe C, Oger F, Lecoutre S, Catheline D, et al. Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes [Internet]. 2019;43:2381–93. https://doi.org/10.1038/s41366-018-0310-z . (PMID: 10.1038/s41366-018-0310-z) ; Picó C, Reis F, Egas C, Mathias P, Matafome P. Lactation as a programming window for metabolic syndrome. Eur J Clin Invest [Internet]. 2021[cited 2022 May 7];51:1–14. https://doi.org/10.1111/ECI.13482 . ; WHO. Health topics: Breastfeeding. World Heal Organ [Internet]. 2021[cited 2022 May 21]. https://www.who.int/health-topics/breastfeeding . ; Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature [Internet]. 2000[cited 2022 May 21];404:661–71. http://www.nature.com/articles/35007534 . ; Obermann-Borst SA, Eilers PHC, Tobi EW, De Jong FH, Slagboom PE, Heijmans BT, et al. Duration of breastfeeding and gender are associated with methylation of The LEPTIN gene in very young children. Pediatr Res [Internet]. 2013[cited 2022 May 21];74:344–9. https://doi.org/10.1038/pr.2013.95 . ; Sherwood WB, Bion V, Lockett GA, Ziyab AH, Soto-Ramírez N, Mukherjee N, et al. Duration of breastfeeding is associated with leptin (LEP) DNA methylation profiles and BMI in 10-year-old children. Clin Epigenetics [Internet]. 2019[cited 2022 May 21];11:1–10. https://doi.org/10.1186/s13148-019-0727-9 . ; Pauwels S, Symons L, Vanautgaerden EL, Ghosh M, Duca RC, Bekaert B, et al. The influence of the duration of breastfeeding on the infant’s metabolic epigenome. Nutrients [Internet]. 2019[cited 2022 May 21];11:1–14. https://doi.org/10.3390/nu11061408 . ; Hartwig FP, Loret de Mola C, Davies NM, Victora CG, Relton CL. Breastfeeding effects on DNA methylation in the offspring: A systematic literature review. PLoS ONE [Internet]. 2017;12:e0173070.  https://dx.plos.org/10.1371/journal.pone.0175604 . ; Hashimoto K, Ogawa Y. Epigenetic switching and neonatal nutritional environment. In: Kubota T, Fukuoka H, editors. Adv Exp Med Biol [Internet]. Springer Nature Singapore Pte Ltd; 2018[cited 2022 May 20]. p. 19–25. https://doi.org/10.1007/978-981-10-5526-3_3 . ; Ehara T, Kamei Y, Yuan X, Takahashi M, Kanai S, Tamura E, et al. Ligand-activated PPARα-dependent DNA demethylation regulates the fatty acid β-oxidation genes in the postnatal liver. Diabetes [Internet]. 2015[cited 2022 May 19];64:775–84. https://doi.org/10.2337/db14-0158 . ; Cheshmeh S, Nachvak SM, Rezvani N, Saber A. Effects of breastfeeding and formula feeding on the expression level of FTO, CPT1A and PPAR-α genes in healthy infants. Diabetes Metab Syndr Obes Targets Ther [Internet]. 2020;13:2227–37. https://www.dovepress.com/effects-of-breastfeeding-and-formula-feeding-on-the-expression-level-o-peer-reviewed-article-DMSO . ; Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun [Internet]. 2018;9. https://doi.org/10.1038/s41467-018-03038-w . ; Fisher FM, Maratos-Flier E. Understanding the Physiology of FGF21. Annu Rev Physiol [Internet]. 2016;78:223–41.  http://www.annualreviews.org/doi/10.1146/annurev-physiol-021115-105339 . ; Yuan X, Tsujimoto K, Hashimoto K, Kawahori K, Hanzawa N, Hamaguchi M, et al. Epigenetic modulation of Fgf21 in the perinatal mouse liver ameliorates diet-induced obesity in adulthood. Nat Commun [Internet]. 2018[cited 2022 May 21];9:636. https://doi.org/10.1038/s41467-018-03038-w . ; Hollstein T, Basolo A, Ando T, Votruba SB, Walter M, Krakoff J, et al. Recharacterizing the metabolic state of energy balance in thrifty and spendthrift phenotypes. J Clin Endocrinol Metab [Internet]. 2020;105:1375–92. https://academic.oup.com/jcem/article/105/5/1375/5771299 . ; Ehara T, Kamei Y, Takahashi M, Yuan X, Kanai S, Tamura E, et al. Role of DNA methylation in the regulation of lipogenic glycerol-3-phosphate acyltransferase 1 gene expression in the mouse neonatal liver. Diabetes [Internet]. 2012[cited 2022 May 19];61:2442–50. https://doi.org/10.2337/db11-1834 . ; Srinivasan M, Mitrani P, Sadhanandan G, Dodds C, Shbeir-ElDika S, Thamotharan S, et al. A high-carbohydrate diet in the immediate postnatal life of rats induces adaptations predisposing to adult-onset obesity. J Endocrinol [Internet]. 2008[cited 2022 May 21];197:565–74. https://doi.org/10.1677/JOE-08-0021 . ; Mahmood S, Smiraglia DJ, Srinivasan M, Patel MS. Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification. J Dev Orig Health Dis [Internet]. 2013[cited 2022 May 21];4:479–90. https://www.cambridge.org/core/product/identifier/S2040174413000238/type/journal_article . ; Dimova LG, de Boer JF, Plantinga J, Plösch T, Hoekstra M, Verkade HJ, et al. Inhibiting cholesterol absorption during lactation programs future intestinal absorption of cholesterol in adult mice. Gastroenterology [Internet]. 2017;153:382-385.e3. https://doi.org/10.1053/j.gastro.2017.04.019 . (PMID: 10.1053/j.gastro.2017.04.01928438611) ; Cordero P, Milagro FI, Campion J, Martinez JA. Supplementation with methyl donors during lactation to high-fat-sucrose-fed dams protects offspring against liver fat accumulation when consuming an obesogenic diet. J Dev Orig Health Dis [Internet]. 2014[cited 2022 May 19];5:385–95. https://doi.org/10.1017/S204017441400035X . ; Mehedint MG, Craciunescu CN, Zeisel SH. Maternal dietary choline deficiency alters angiogenesis in fetal mouse hippocampus. Proc Natl Acad Sci [Internet]. 2010;107:12834–9.  http://www.pnas.org/cgi/doi/10.1073/pnas.0914328107 . ; Garcia MM, Guéant-Rodriguez RM, Pooya S, Brachet P, Alberto JM, Jeannesson E, et al. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1α by PRMT1 and SIRT1. J Pathol [Internet]. 2011[cited 2022 May 20];225:324–35. https://doi.org/10.1002/path.2881 . ; Pellanda H, Forges T, Bressenot A, Chango A, Bronowicki JP, Guéant JL, et al. Fumonisin FB1 treatment acts synergistically with methyl donor deficiency during rat pregnancy to produce alterations of H3- and H4-histone methylation patterns in fetuses. Mol Nutr Food Res [Internet]. 2012[cited 2022 May 21];56:976–85.  http://doi.wiley.com/10.1002/mnfr.201100640 . ; Saber Cherif L, Pourié G, Geoffroy A, Julien A, Helle D, Robert A, et al. Methyl donor deficiency during gestation and lactation in the rat affects the expression of neuropeptides and related receptors in the hypothalamus. Int J Mol Sci [Internet]. 2019;20:1–13. https://doi.org/10.3390/ijms20205097 . (PMID: 10.3390/ijms20205097) ; Shamir R, Shehadeh N. Insulin in human milk and the use of hormones in infant formulas. Nestle Nutr Inst Workshop Ser [Internet]. 2013;57–64. https://doi.org/10.1159/000351384 . ; Gavaldà-Navarro A, Hondares E, Giralt M, Mampel T, Iglesias R, Villarroya F. Fibroblast growth factor 21 in breast milk controls neonatal intestine function. Sci Rep [Internet]. 2015[cited 2022 May 20];5:1–13. https://doi.org/10.1038/srep13717 . ; Palou M, Picó C, Palou A. Leptin as a breast milk component for the prevention of obesity. Nutr Rev [Internet]. 2018[cited 2022 May 23];76:875–92. https://doi.org/10.1093/nutrit/nuy046 . ; Schuster S, Hechler C, Gebauer C, Kiess W, Kratzsch J. Leptin in maternal serum and breast milk: Association with infants’ body weight gain in a longitudinal study over 6 months of lactation. Pediatr Res [Internet]. 2011;70:633–7.  https://www.nature.com/doifinder/10.1203/PDR.0b013e31823214ea . ; Çağiran Yilmaz F, Özçelik AÖ. The relationships between leptin levels in maternal serum and breast milk of mothers and term infants. Ann Med [Internet]. 2021;53:1310–6.  https://www.tandfonline.com/doi/full/10.1080/07853890.2021.1964037 . ; Miralles O, Sánchez J, Palou A, Picó C. A physiological role of breast milk leptin in body weight control in developing infants*. Obesity [Internet]. 2006;14:1371–7.  http://doi.wiley.com/10.1038/oby.2006.155 . ; Houseknecht KL, McGuire MK, Portocarrero CP, McGuire MA, Beerman K. Leptin is present in human milk and is related to maternal plasma leptin concentration and adiposity. Biochem Biophys Res Commun [Internet]. 1997;240:742–7. https://linkinghub.elsevier.com/retrieve/pii/S0006291X97977366 . ; Doneray H, Orbak Z, Yildiz L. The relationship between breast milk leptin and neonatal weight gain. Acta Paediatr [Internet]. 2009;98:643–7.  https://onlinelibrary.wiley.com/doi/10.1111/j.1651-2227.2008.01192.x . ; Priego T, Sánchez J, Palou A, Picó C. Leptin intake during the suckling period improves the metabolic response of adipose tissue to a high-fat diet. Int J Obes [Internet]. 2010;34:809–19. https://www.nature.com/articles/ijo201018 . ; Picó C, Oliver P, Sánchez J, Miralles O, Caimari A, Priego T, et al. The intake of physiological doses of leptin during lactation in rats prevents obesity in later life. Int J Obes [Internet]. 2007;31:1199–209. https://www.nature.com/articles/0803585 . ; Sánchez J, Priego T, Palou M, Tobaruela A, Palou A, Picó C. Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life. Endocrinology [Internet]. 2008;149:733–40. https://academic.oup.com/endo/article/149/2/733/2454843 . ; Liao Y, Du X, Li J, Lönnerdal B. Human milk exosomes and their microRNAs survive digestion in vitro and are taken up by human intestinal cells. Mol Nutr Food Res [Internet]. 2017[cited 2022 May 20];61:1–11. https://doi.org/10.1002/mnfr.201700082 . ; Melnik B, Schmitz G. Milk’s role as an epigenetic regulator in health and disease. Diseases [Internet]. 2017[cited 2022 May 21];5:12. https://doi.org/10.3390/diseases5010012 . ; Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, et al. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep [Internet]. 2018[cited 2022 May 21];8:1–11. https://doi.org/10.1038/s41598-018-29780-1 . ; Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr [Internet]. 2014[cited 2022 May 16];144:1495–500. https://doi.org/10.3945/jn.114.196436 . ; Melnik B. Milk: An epigenetic amplifier of FTO-mediated transcription? Implications for Western diseases. J Transl Med [Internet]. 2015[cited 2022 May 21];13:1–22. https://doi.org/10.1186/s12967-015-0746-z . ; Widén E, Silventoinen K, Sovio U, Ripatti S, Cousminer DL, Hartikainen AL, et al. Pubertal timing and growth influences cardiometabolic risk factors in adult males and females. Diabetes Care [Internet]. 2012[cited 2022 May 21];35:850–6. https://doi.org/10.2337/dc11-1365 . ; De Oliveira JC, Lisboa PC, de Moura EG, Barella LF, Miranda RA, Malta A, et al. Poor pubertal protein nutrition disturbs glucose-induced insulin secretion process in pancreatic islets and programs rats in adulthood to increase fat accumulation. J Endocrinol [Internet]. 2013[cited 2022 May 19];216:195–206. https://doi.org/10.1530/JOE-12-0408 . ; Blakemore SJ, Choudhury S. Development of the adolescent brain: implications for executive function and social cognition. J Child Psychol Psychiatry [Internet]. 2006[cited 2022 May 16];47:296–312. https://doi.org/10.1111/j.1469-7610.2006.01611.x . ; Perrin JS, Hervé PY, Leonard G, Perron M, Pike GB, Pitiot A, et al. Growth of white matter in the adolescent brain: role of testosterone and androgen receptor. J Neurosci [Internet]. 2008[cited 2022 May 21];28:9519 –24. https://doi.org/10.1523/JNEUROSCI.1212-08.2008 . ; Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience [Internet]. 2014[cited 2022 May 21];264:17–24. https://doi.org/10.1016/j.neuroscience.2013.11.014 . ; Manfredi-Lozano M, Roa J, Tena-Sempere M. Connecting metabolism and gonadal function: Novel central neuropeptide pathways involved in the metabolic control of puberty and fertility. Front Neuroendocrinol [Internet]. 2018 [cited 2022 May 21];48:37–49. https://doi.org/10.1016/j.yfrne.2017.07.008 . ; Vazquez MJ, Velasco I, Tena-Sempere M. Novel mechanisms for the metabolic control of puberty: Implications for pubertal alterations in early-onset obesity and malnutrition. J Endocrinol [Internet]. 2019[cited 2022 May 21];242:R51–65. https://doi.org/10.1530/JOE-19-0223 . ; Aylwin CF, Toro CA, Shirtcliff E, Lomniczi A. Emerging genetic and epigenetic mechanisms underlying pubertal maturation in adolescence. J Res Adolesc [Internet]. 2019[cited 2022 May 16];29:54–79. https://doi.org/10.1111/jora.12385 . ; Prewitt AK, Wilson ME. Changes in estrogen receptor-alpha mRNA in the mouse cortex during development. Brain Res [Internet]. 2007[cited 2022 May 21];1134:62–9. https://doi.org/10.1016/j.brainres.2006.11.069 . ; Westberry JM, Trout AL, Wilson ME. Epigenetic regulation of estrogen receptor α gene expression in the mouse cortex during early postnatal development. Endocrinology [Internet]. 2010[cited 2022 May 7];151:731. https://doi.org/10.1210/EN.2009-0955 . ; Murray EK, Hien A, De Vries GJ, Forger NG. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology [Internet]. 2009[cited 2022 May 21];150:4241–7. https://doi.org/10.1210/en.2009-0458 . ; Rhie Y-J. Kisspeptin/G protein-coupled receptor-54 system as an essential gatekeeper of pubertal development. Ann Pediatr Endocrinol Metab. 2013;18:59. (PMID: 10.6065/apem.2013.18.2.55) ; Vazquez MJ, Toro CA, Castellano JM, Ruiz-Pino F, Roa J, Beiroa D, et al. SIRT1 mediates obesity- and nutrient-dependent perturbation of pubertal timing by epigenetically controlling Kiss1 expression. Nat Commun [Internet]. 2018[cited 2022 May 21];9:1–15. https://doi.org/10.1038/s41467-018-06459-9 . ; Ahima RS, Saper CB, Flier JS, Elmquist JK. Leptin regulation of neuroendocrine systems. Front Neuroendocrinol [Internet]. 2000[cited 2022 May 7];21:263–307. https://doi.org/10.1006/frne.2000.0197 . ; Farooqi IS, O’Rahilly S. 20 years of leptin: human disorders of leptin action. J Endocrinol [Internet]. 2014[cited 2022 May 19];223:63–70. https://doi.org/10.1530/joe-14-0480 . ; Sdona E, Briana DD, Malamitsi-Puchner A. Impact of economic crises on offspring health and the developmental origins of health and disease concept. Acta Paediatr [Internet]. 2020[cited 2021 Mar 27];109:453–9. https://doi.org/10.1111/apa.15040 . ; Xu X, Miao Z, Sun M, Wan B. Epigenetic mechanisms of paternal stress in offspring development and diseases. Int J Genomics [Internet]. 2021[cited 2021 Mar 28];2021:1–10. https://doi.org/10.1155/2021/6632719 . ; Vaiserman A. Early-life nutritional programming of longevity. J Dev Orig Health Dis [Internet]. 2014[cited 2021 Jan 13];5:325–38. https://doi.org/10.1017/S2040174414000294 . ; Donkin I, Barrès R. Sperm epigenetics and influence of environmental factors. Mol Metab [Internet]. 2018[cited 2021 Mar 28];14:1–11. https://doi.org/10.1016/j.molmet.2018.02.006 . ; Moore DS. The developing genome: an introduction to behavioral epigenetics. New York: Oxford University Press; 2015. ; Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA [Internet]. 2007[cited 2021 Jan 13];104:12796–800. https://doi.org/10.1073/pnas.0705667104 . ; Hanley B, Dijane J, Fewtrell M, Grynberg A, Hummel S, Junien C, et al. Metabolic imprinting, programming and epigenetics - a review of present priorities and future opportunities. Br J Nutr [Internet]. 2010[cited 2021 Jan 13];104:1–25. https://doi.org/10.1017/S0007114510003338 . ; Houshmand-Oeregaard A, Hjort L, Kelstrup L, Hansen NS, Broholm C, Gillberg L, et al. DNA methylation and gene expression of TXNIP in adult offspring of women with diabetes in pregnancy. PLoS ONE [Internet]. 2017[cited 2021 Jan 13];12:1–18. https://doi.org/10.1371/journal.pone.0187038 . ; Burton MA, Lillycrop KA. Nutritional modulation of the epigenome and its implication for future health. Proc Nutr Soc [Internet]. 2019[cited 2021 Jan 13];78:305–12. https://doi.org/10.1017/S0029665119000016 . ; Susiarjo M, Bartolomei MS. You are what you eat, but what about your DNA? Science (80-) [Internet]. 2014[cited 2021 Mar 28];345:733–4. https://doi.org/10.1126/science.1258654 . ; Ren J, Cheng Y, Ming ZH, Dong XY, Zhou YZ, Ding GL, et al. Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs. Epigenetics Chromatin [Internet]. 2018[cited 2021 Mar 28];11:1–14. https://doi.org/10.1186/s13072-018-0192-2 . ; Huang KK, Huang J, Wu JKL, Lee M, Tay ST, Kumar V, et al. Long-read transcriptome sequencing reveals abundant promoter diversity in distinct molecular subtypes of gastric cancer. Genome Biol [Internet]. 2021[cited 2021 Mar 28];22. https://doi.org/10.1186/s13059-021-02261-x . ; Mill J, Petronis A. Pre- and peri-natal environmental risks for attention-deficit hyperactivity disorder (ADHD): the potential role of epigenetic processes in mediating susceptibility. J Child Psychol Psychiatry Allied Discip [Internet]. 2008[cited 2022 May 23];49:1020–30. https://doi.org/10.1111/j.1469-7610.2008.01909.x . ; Junien C, Panchenko P, Pirola L, Amarger V, Kaeffer B, Parnet P, et al. Le nouveau paradigme de l’origine développementale de la santé et des maladies (DOHaD) - Épigénétique, environnement: preuves et chaînons manquants. Med Sci [Internet]. 2016[cited 2020 Nov 11];32:27–34. https://doi.org/10.1051/medsci/20163201006 . ; Gluckman PD, Hanson MA, Bateson P, Beedle AS, Law CM, Bhutta ZA, et al. Towards a new developmental synthesis: adaptive developmental plasticity and human disease. Lancet [Internet]. 2009[cited 2021 Mar 27];373:1654–7. https://doi.org/10.1016/S0140-6736(09)60234-8 . ; Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, et al. Neonatal leptin treatment reverses developmental programming. Endocrinology [Internet]. 2005[cited 2021 Jan 13];146:4211–6. https://doi.org/10.1210/en.2005-0581 . ; Previate C, Malta A, Miranda RA, Martins IP, Pavanello A, de Oliveira JC, et al. Early metformin treatment improves pancreatic function and prevents metabolic dysfunction in early overfeeding male rats at adulthood. Exp Physiol [Internet]. 2020;105:2051–60.  https://physoc.onlinelibrary.wiley.com/doi/10.1113/EP088846 . ; Gregg BE, Botezatu N, Brill JD, Hafner H, Vadrevu S, Satin LS, et al. Gestational exposure to metformin programs improved glucose tolerance and insulin secretion in adult male mouse offspring. Sci Rep [Internet]. 2018;8:5745. https://www.nature.com/articles/s41598-018-23965-4 . ; Salomäki H, Heinäniemi M, Vähätalo LH, Ailanen L, Eerola K, Ruohonen ST, et al. Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring. PLoS ONE [Internet]. 2014;9:e115778.  https://dx.plos.org/10.1371/journal.pone.0115778 . ; Godfrey KM, Costello PM, Lillycrop KA. The developmental environment, epigenetic biomarkers and long-term health. J Dev Orig Health Dis [Internet]. 2015[cited 2021 Jan 13];6:399–406. https://doi.org/10.1017/S204017441500121X . ; Roura LC, Arulkumaran SS. Facing the noncommunicable disease (NCD) global epidemic - the battle of prevention starts in utero - the FIGO challenge. Best Pract Res Clin Obstet Gynaecol [Internet]. 2015[cited 2021 Mar 28];29:5–14. https://doi.org/10.1016/j.bpobgyn.2014.04.018 . ; Halfon N, Forrest CB, Lerner RM, Faustman EM. Handbook of life course health development [Internet]. Springer; 2018[cited 2022 May 20]. https://doi.org/10.1007/978-3-319-47143-3_27 . ; Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med [Internet]. 2008[cited 2021 Mar 27];359:61–73. https://doi.org/10.1056/nejmra0708473 . ; Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease: a life history and evolutionary perspective. Am J Hum Biol [Internet]. 2007[cited 2021 Mar 27];19:1–19. https://doi.org/10.1002/ajhb.20590 . ; Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R. Intrauterine programming of obesity and type 2 diabetes. Diabetologia [Internet]. 2019[cited 2022 May 23];62:1789–1801. https://doi.org/10.1007/s00125-019-4951-9 . ; Martin AA. Maternal adiposity alters transcriptomic and epigenomic neurodevelopmental landscapes in the fetal hippocampus. ProQuest Diss. Theses: The University of Oklahoma Health Sciences Center; 2020. ; Pentecost M, Ross F. The first thousand days: motherhood, scientific knowledge, and local histories. Med Anthropol Cross Cult Stud Heal Illn [Internet]. 2019[cited 2022 May 23];38:747–61. https://doi.org/10.1080/01459740.2019.1590825 . ; Harris JE, Baer LA, Stanford KI. Maternal exercise improves the metabolic health of adult offspring. Trends Endocrinol Metab. 2018;29. ; Stanford KI, Takahashi H, So K, Alves-Wagner AB, Prince NB, Lehnig AC, et al. Maternal exercise improves glucose tolerance in female offspring. Diabetes [Internet]. 2017;66:2124–36. https://diabetesjournals.org/diabetes/article/66/8/2124/39984/Maternal-Exercise-Improves-Glucose-Tolerance-in . ; Stanford KI, Lee MY, Getchell KM, So K, Hirshman MF, Goodyear LJ. Exercise before and during pregnancy prevents the deleterious effects of maternal high-fat feeding on metabolic health of male offspring. Diabetes [Internet]. 2015;64:427–33. https://diabetesjournals.org/diabetes/article/64/2/427/33986/Exercise-Before-and-During-Pregnancy-Prevents-the . ; Laker RC, Lillard TS, Okutsu M, Zhang M, Hoehn KL, Connelly JJ, et al. Exercise prevents maternal high-fat diet–induced hypermethylation of the pgc-1α gene and age-dependent metabolic dysfunction in the offspring. Diabetes [Internet]. 2014;63:1605–11. https://diabetesjournals.org/diabetes/article/63/5/1605/34143/Exercise-Prevents-Maternal-High-Fat-Diet-Induced . ; Souza AFP, Souza LL, Oliveira LS, Cordeiro A, Souza E, Kluck GEG, et al. Fish oil supplementation during adolescence attenuates metabolic programming of perinatal maternal high-fat diet in adult offspring. Br J Nutr [Internet]. 2019[cited 2021 Jan 13];121:1345–56. https://doi.org/10.1017/S0007114519000771 . ; Trombini AB, Franco CC, Miranda RA, de Oliveira JC, Barella LF, Prates KV, et al. Early treatment with metformin induces resistance against tumor growth in adult rats. Cancer Biol Ther [Internet]. 2015;16:958–64.  http://www.tandfonline.com/doi/full/10.4161/15384047.2014.962968 . ; Huang HF, Ding GL, Liu X, Jiang ZR. The intergenerational effects on fetal programming. In: Human reproductive and prenatal genetics [Internet]. EUA: Academic Press; 2019[cited 2020 Nov 12]. p. 361–79. https://doi.org/10.1016/B978-0-12-813570-9.00016-4 . ; Saavedra LPJ, Prates KV, Gonçalves GD, Piovan S, Matafome P, Mathias PC de F. COVID-19 during development: a matter of concern. Front Cell Dev Biol [Internet]. 2021[cited 2022 Sep 13];9:1–9. https://doi.org/10.3389/FCELL.2021.659032 .
  • Contributed Indexing: Keywords: Adolescence; Epigenomics; Growth and development; Lactation; Noncommunicable disease; Pregnancy
  • Entry Date(s): Date Created: 20231201 Date Completed: 20240318 Latest Revision: 20240319
  • Update Code: 20240319

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -