Zum Hauptinhalt springen

The ClpX chaperone and a hypermorphic FtsA variant with impaired self-interaction are mutually compensatory for coordinating Staphylococcus aureus cell division.

Henriksen, C ; Baek, KT ; et al.
In: Molecular microbiology, Jg. 121 (2024), Heft 1, S. 98-115
Online academicJournal

Titel:
The ClpX chaperone and a hypermorphic FtsA variant with impaired self-interaction are mutually compensatory for coordinating Staphylococcus aureus cell division.
Autor/in / Beteiligte Person: Henriksen, C ; Baek, KT ; Wacnik, K ; Gallay, C ; Veening, JW ; Foster, SJ ; Frees, D
Link:
Zeitschrift: Molecular microbiology, Jg. 121 (2024), Heft 1, S. 98-115
Veröffentlichung: Oxford, OX ; Boston, MA : Blackwell Scientific Publications, c1987-, 2024
Medientyp: academicJournal
ISSN: 1365-2958 (electronic)
DOI: 10.1111/mmi.15200
Schlagwort:
  • Humans
  • Bacterial Proteins metabolism
  • Endopeptidase Clp genetics
  • Endopeptidase Clp metabolism
  • Staphylococcus aureus metabolism
  • Cell Division genetics
  • Escherichia coli metabolism
  • ATPases Associated with Diverse Cellular Activities genetics
  • Molecular Chaperones genetics
  • Molecular Chaperones metabolism
  • Escherichia coli Proteins metabolism
  • Staphylococcal Infections
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article; Research Support, Non-U.S. Gov't
  • Language: English
  • [Mol Microbiol] 2024 Jan; Vol. 121 (1), pp. 98-115. <i>Date of Electronic Publication: </i>2023 Dec 01.
  • MeSH Terms: Escherichia coli Proteins* / metabolism ; Staphylococcal Infections* ; Humans ; Bacterial Proteins / metabolism ; Endopeptidase Clp / genetics ; Endopeptidase Clp / metabolism ; Staphylococcus aureus / metabolism ; Cell Division / genetics ; Escherichia coli / metabolism ; ATPases Associated with Diverse Cellular Activities / genetics ; Molecular Chaperones / genetics ; Molecular Chaperones / metabolism
  • References: Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A. et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics, 9, 75. ; Baek, K., Gründling, A., Mogensen, R.G., Thøgersen, L., Petersen, A., Paulander, W. et al. (2014) β-Lactam resistance in methicillin-resistant Staphylococcus aureus USA300 is increased by inactivation of the ClpXP protease. Antimicrobial Agents and Chemotherapy, 58, 4593-4603. ; Baek, K.T., Bowman, L., Millership, C., Søgaard, M.D., Kaever, V., Siljamäki, P. et al. (2016) The cell wall polymer lipoteichoic acid becomes non-essential in Staphylococcus aureus cells lacking the ClpX chaperone. mBio, 7(4), e01228-16. ; Bisson-Filho, A.W., Hsu, Y.P., Squyres, G., Kuru, E., Wu, F., Jukes, C. et al. (2016) Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Sciene, 355(6326), 739-743. ; Bork, P., Sander, C. & Valencia, A. (1992) An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. Proceedings of the National Academy of Sciences of the United States of America, 89, 7290-7294. ; Busiek, K.K. & Margolin, W. (2015) Bacterial actin and tubulin homologs in cell growth and division. Current Biology, 25(6), R243-R254. Available from: https://doi.org/10.1016/j.cub.2015.01.030. ; Campbell, J., Singh, A.K., Santa Maria, J.P., Jr., Kim, Y., Brown, S., Swoboda, J.G. et al. (2011) Synthetic lethal compound combinations reveal a fundamental connection between wall teichoic acid and peptidoglycan biosyntheses in Staphylococcus aureus. ACS Chemical Biology, 6, 106-116. Available from: https://doi.org/10.1021/cb100269f. ; Clarke, A.K., Schelin, J. & Porankiewicz, J. (1998) Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation. Plant Molecular Biology, 37, 791-801. ; Du, S. & Lutkenhaus, J. (2017) Assembly and activation of the Escherichia coli divisome. Molecular Microbiology, 105(2), 177-187. ; Du, S., Pichoff, S. & Lutkenhaus, J. (2016) FtsEX acts on FtsA to regulate divisome assembly and activity. Proceedings of the National Academy of Sciences of the United States of America, 113(34), E5052-E5061. ; Dziedzic, R., Kiran, M., Plocinski, P., Ziolkiewicz, M., Brzostek, A., Moomey, M. et al. (2010) Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PLoS ONE, 5, e11058. ; Feng, J., Michalik, S., Varming, A.N., Andersen, J.H., Albrecht, D., Jelsbak, L. et al. (2013) Trapping and proteomic identification of cellular substrates of the ClpP protease in Staphylococcus aureus. Journal of Proteome Research, 12(2), 547-558. ; Frees, D., Qazi, S., Hill, P.J. & Ingmer, H. (2003) Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Molecular Microbiology, 48, 1565-1578. ; Frees, D., Savijoki, K., Varmanen, P. & Ingmer, H. (2007) Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, gram-positive bacteria. Molecular Microbiology, 63, 1285-1295. ; Fujita, J., Maeda, Y., Nagao, C., Tsuchiya, Y., Miyazaki, Y., Hirose, M. et al. (2014) Crystal structure of FtsA from Staphylococcus aureus. FEBS Letters, 588, 1879-1885. ; Haeusser, D.P., Lee, A.H., Weart, R.B. & Levin, P.A. (2009) ClpX inhibits FtsZ assembly in a manner that does not require its ATP hydrolysis-dependent chaperone activity. Journal of Bacteriology, 191, 1986-1991. ; Haeusser, D.P. & Margolin, W. (2016) Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nature Reviews Microbiology, 14(5), 305-319. ; Herricks, J.R., Nguyen, D. & Margolin, W. (2014) A thermosensitive defect in the ATP binding pocket of FtsA can be suppressed by allosteric changes in the dimer interface. Molecular Microbiology, 94(3), 713-727. ; Holmes, K.C., Sander, C. & Valencia, A. (1993) A new ATP-binding fold in actin, hexokinase and Hsc70. Trends in Cell Biology, 3, 53-59. ; Jelsbak, L., Ingmer, H., Valihrach, L., Cohn, M.T., Christiansen, M.H.G., Kallipolitis, B.H. et al. (2010) The chaperone ClpX stimulates expression of Staphylococcus aureus protein a by rot dependent and independent pathways. PLoS ONE, 5(9), 1-11. ; Jenal, U. & Fuchs, T. (1998) An essential protease involved in bacterial cell-cycle control. The EMBO Journal, 17, 5658-5669. ; Jensen, C., Baek, K.T., Gallay, C., Thalsø-Madsen, I., Xu, L., Jousselin, A. et al. (2019) The ClpX chaperone controls autolytic splitting of Staphylococcus aureus daughter cells, but is bypassed by β-lactam antibiotics or inhibitors of WTA biosynthesis. PLoS Pathogens, 15(9), e1008044. ; Jensen, C., Fosberg, M.J., Thalsø-Madsen, I., Baek, K.T. & Frees, D. (2019) Staphylococcus aureus ClpX localizes at the division septum and impacts transcription of genes involved in cell division, T7-secretion, and SaPI5-excision. Scientific Reports, 9, 16456. Available from: https://doi.org/10.1038/s41598-019-52823-0. ; Jensen, C., Li, H., Vestergaard, M., Dalsgaard, A., Frees, D. & Leisner, J.J. (2020) Nisin damages the septal membrane and triggers DNA condensation in methicillin-resistant Staphylococcus aureus. Frontiers in Microbiology, 11, 1007. Available from: https://doi.org/10.3389/fmicb.2020.01007. ; Kajimura, J., Fujiwara, T., Yamada, S., Suzawa, Y., Nishida, T., Oyamada, Y. et al. (2005) Identification and molecular characterization of an N-acetylmuramyl-l-alanine amidase Sle1 involved in cell separation of Staphylococcus aureus. Molecular Microbiology, 58, 1087-1101. ; Kardon, J., Moroco, J.A., Engen, J.R. & Baker, T.A. (2020) Mitochondrial ClpX activates an essential biosynthetic enzyme through partial unfolding. eLife, 9, e54387. Available from: https://doi.org/10.7554/eLife.54387. ; Kasashima, K., Sumitani, M. & Endo, H. (2012) Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX. Experimental Cell Research, 318, 2335-2343. ; Krupka, M. & Margolin, W. (2018) Unite to divide: oligomerization of tubulin and actin homologs regulates initiation of bacterial cell. F1000Research, 7, 235. Available from: https://doi.org/10.12688/f1000research.13504.1. ; Krupka, M., Rowlett, V.W., Morado, D., Vitrac, H., Schoenemann, K., Liu, J. et al. (2017) Escherichia coli FtsA forms lipid-bound minirings that antagonize lateral interactions between FtsZ protofilaments. Nature Communications, 8, 15957. ; Kuru, E., Hughes, H.V., Brown, P.J., Hall, E., Tekkam, S., Cava, F. et al. (2012) In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angewandte Chemie International Edition, 51(50), 12519-12523. ; Langmead, B. & Salzberg, S.L. (2012) Fast gapped-read alignment with bowtie 2. Nature Methods, 9, 357-359. ; Lara, B., Rico, A.I., Petruzzelli, S., Santona, A., Dumas, J., Biton, J. et al. (2005) Cell division in cocci: localization and properties of the Streptococcus pneumoniae FtsA protein. Molecular Microbiology, 55(3), 699-711. ; Lee, S.H., Wang, H., Labroli, M., Koseoglu, S., Zuck, P., Mayhood, T. et al. (2016) TarO-specific inhibitors of wall teichoic acid biosynthesis restore β-lactam efficacy against methicillin-resistant staphylococci. Science Translational Medicine, 8, 329ra32. ; Li, G. & Moore, J.K. (2020) Microtubule dynamics at low temperature: evidence that tubulin recycling limits assembly. Molecular Biology of the Cell, 31(11), 1154-1166. Available from: https://doi.org/10.1091/mbc.E19-11-0634. ; Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N. et al. (2009) The sequence alignment/map format and SAMtools. Bioinformatics, 25, 2078-2079. ; Liew, A.T., Theis, T., Jensen, S.O., Garcia-Lara, J., Foster, S.J., Firth, N. et al. (2011) A simple plasmid-based system that allows rapid generation of tightly controlled gene expression in Staphylococcus aureus. Microbiology, 157, 666-676. ; Liu, B., Persons, L., Lee, L. & de Boer, P.A. (2015) Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Molecular Microbiology, 95(6), 945-970. Available from: https://doi.org/10.1111/mmi.12906. ; Lund, V.A., Wacnik, K., Turner, R.D., Cotterell, B.E., Walther, C.G., Fenn, S.J. et al. (2018) Molecular coordination of Staphylococcus aureus cell division. eLife, 7, e32057. Available from: https://doi.org/10.7554/eLife. ; Martin, A., Baker, T.A. & Sauer, R.T. (2008a) Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Molecular Cell, 29, 441-450. ; Martin, A., Baker, T.A. & Sauer, R.T. (2008b) Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Nature Structural & Molecular Biology, 15, 1147-1151. ; Mogk, A., Bukau, B. & Kampinga, H.H. (2018) Cellular handling of protein aggregates by disaggregation machines. Molecular Cell, 69, 214-226. ; Monteiro, J.M., Fernandes, P.B., Vaz, F., Pereira, A.R., Tavares, A.C., Ferreira, M.T. et al. (2015) Cell shape dynamics during the staphylococcal cell cycle. Nature Communications, 6, 8055. Available from: https://doi.org/10.1038/ncomms9055. ; Moreland, J.L., Gramada, A., Buzko, O.V., Zhang, Q. & Bourne, P.E. (2005) The molecular biology toolkit (MBT): a modular platform for developing molecular visualization applications. BMC Bioinformatics, 6, 21. ; Olivares, A.O., Baker, T.A. & Sauer, R.T. (2016) Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nature Reviews Microbiology, 14, 33-44. ; Park, K.T., Pichoff, S., Du, S. & Lutkenhaus, J. (2021) FtsA acts through FtsW to promote cell wall synthesis during cell division in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 118(35), e2107210118. Available from: https://doi.org/10.1073/pnas.2107210118. ; Pichoff, S., Du, S. & Lutkenhaus, J. (2015) The bypass of ZipA by overexpression of FtsN requires a previously unknown conserved FtsN motif essential for FtsA-FtsN interaction supporting a model in which FtsA monomers recruit late cell division proteins to the Z ring. Molecular Microbiology, 95, 971-987. ; Pichoff, S., Du, S. & Lutkenhaus, J. (2018) Disruption of divisome assembly rescued by FtsN-FtsA interaction in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 115(29), E6855-E6862. Available from: https://doi.org/10.1073/pnas.1806450115. ; Pichoff, S., Shen, B., Sullivan, B. & Lutkenhaus, J. (2012) FtsA mutants impaired for self-interaction bypass ZipA suggesting a model in which FtsA's self-interaction competes with its ability to recruit downstream division proteins. Molecular Microbiology, 83, 151-167. ; Pinho, M.G. & Errington, J. (2003) Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery. Molecular Microbiology, 50, 871-881. ; Piotrowski, A., Burghout, P. & Morrison, D.A. (2009) spr1630 is responsible for the lethality of clpX mutations in streptococcus pneumonia. Journal of Bacteriology, 191, 4888-4895. ; Reed, P., Veiga, H., Jorge, A.M., Terrak, M. & Pinho, M.G. (2011) Monofunctional transglycosylases are not essential for Staphylococcus aureus cell wall synthesis. Journal of Bacteriology, 193, 2549-2556. ; Reichmann, N.T., Piçarra Cassona, C., Monteiro, J.M., Bottomley, A.L., Corrigan, R.M., Foster, S.J. et al. (2014) Differential localization of LTA synthesis proteins and their interaction with the cell division machinery in Staphylococcus aureus. Molecular Microbiology, 92, 273-286. ; Rodriguez-Aliaga, P., Ramirez, L., Kim, F., Bustamante, C. & Martin, A. (2016) Substrate-translocating loops regulate mechanochemical coupling and power production in AAA+ protease ClpXP. Nature Structural & Molecular Biology, 23, 974-981. ; Saibil, H. (2013) Chaperone machines for protein folding, unfolding and disaggregation. Nature Reviews Molecular Cell Biology, 14, 630-642. Available from: https://doi.org/10.1038/nrm3658. ; Sánchez, M., Valencia, A., Ferrándiz, M.J., Sander, C. & Vicente, M. (1994) Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. The EMBO Journal, 13(20), 4919-4925. Available from: https://doi.org/10.1002/j.1460-2075.1994.tb06819.x. ; Schoenemann, K.M., Krupka, M., Rowlett, V.W., Distelhorst, S.L., Hu, B. & Margolin, W. (2018) Gain-of-function variants of FtsA form diverse oligomeric structures on lipids and enhance FtsZ protofilament bundling. Molecular Microbiology, 109(5), 676-693. Available from: https://doi.org/10.1111/mmi.14069. ; Siddiqui, S.M., Sauer, R.T. & Baker, T.A. (2004) Role of the processing pore of the ClpX AAA+ ATPase in the recognition and engagement of specific protein substrates. Genes & Development, 18, 369-374. ; Somerville, G.A., Beres, S.B., Fitzgerald, J.R., DeLeo, F.R., Cole, R.L., Hoff, J.S. et al. (2002) In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. Journal of Bacteriology, 184, 1430-1437. ; Stahlhut, S.G., Alqarzaee, A.A., Jensen, C., Fisker, N.S., Pereira, A.R., Pinho, M.G. et al. (2017) The ClpXP protease is dispensable for degradation of unfolded proteins in Staphylococcus aureus. Scientific Reports, 7, 11739. ; Steele, V.R., Bottomley, A.L., Garcia-Lara, J., Kasturiarachchi, J. & Foster, S.J. (2011) Multiple essential roles for EzrA in cell division of Staphylococcus aureus. Molecular Microbiology, 80, 542-555. ; Sugimoto, S., Yamanaka, K., Nishikori, S., Miyagi, A., Ando, T. & Ogura, T. (2010) AAA+ chaperone ClpX regulates dynamics of prokaryotic cytoskeletal protein FtsZ. The Journal of Biological Chemistry, 285, 6648-6657. ; Thalsø-Madsen, I., Torrubia, F.R., Xu, L., Petersen, A., Jensen, C. & Frees, D. (2020) The Sle1 cell wall amidase is essential for β-lactam resistance in community-acquired methicillin-resistant Staphylococcus aureus USA300. Antimicrobial Agents and Chemotherapy, 64(1), e01931-19. Available from: https://doi.org/10.1128/AAC.01931-19. ; Tsang, M.J. & Bernhardt, T.G. (2015) A role for the FtsQLB complex in cytokinetic ring activation revealed by an ftsL allele that accelerates division. Molecular Microbiology, 95(6), 925-944. Available from: https://doi.org/10.1111/mmi.12905. ; van den Boom, J. & Meyer, H. (2018) VCP/p97-mediated unfolding as a principle in protein homeostasis and signaling. Molecular Cell, 69, 182-194. ; Weart, R.B., Nakano, S., Lane, B.E., Zuber, P. & Levin, P.A. (2005) The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Molecular Microbiology, 57, 238-249. ; Wertheim, H.F., Melles, D.C., Vos, M.C., van Leeuwen, W., van Belkum, A., Verbrugh, H.A. et al. (2005) The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, 5(12), 751-762. ; Yang, X., Lyu, Z., Miguel, A., McQuillen, R., Huang, K.K.C. & Xiao, J. (2017) GTPase activity-coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell-wall synthesis. Sciene, 355(6326), 744-747. ; Zhou, X., Halladin, D.K., Rojas, E.R., Koslover, E.F., Lee, T.K., Huang, K.C. et al. (2015) Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus. Science, 348(6234), 574-578.
  • Grant Information: 212197/Z/19/Z United Kingdom WT_ Wellcome Trust
  • Contributed Indexing: Keywords: Staphylococcus aureus; AAA+ ATPases; ClpX; FtsA; cell division; peptidoglycan
  • Substance Nomenclature: 0 (Bacterial Proteins) ; EC 3.4.21.92 (Endopeptidase Clp) ; 0 (Escherichia coli Proteins) ; 0 (FtsA protein, E coli) ; EC 3.6.1.3 (ClpX protein, E coli) ; EC 3.6.4.- (ATPases Associated with Diverse Cellular Activities) ; 0 (Molecular Chaperones)
  • Entry Date(s): Date Created: 20231202 Date Completed: 20240115 Latest Revision: 20240412
  • Update Code: 20240412

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -