Zum Hauptinhalt springen

Similarities and differences of dynamic and static spontaneous brain activity between left and right temporal lobe epilepsy.

Song, C ; Xie, S ; et al.
In: Brain imaging and behavior, Jg. 18 (2024-04-01), Heft 2, S. 352-367
Online academicJournal

Titel:
Similarities and differences of dynamic and static spontaneous brain activity between left and right temporal lobe epilepsy.
Autor/in / Beteiligte Person: Song, C ; Xie, S ; Zhang, X ; Han, S ; Lian, Y ; Ma, K ; Mao, X ; Zhang, Y ; Cheng, J
Link:
Zeitschrift: Brain imaging and behavior, Jg. 18 (2024-04-01), Heft 2, S. 352-367
Veröffentlichung: Secaucus, NJ : Springer, 2024
Medientyp: academicJournal
ISSN: 1931-7565 (electronic)
DOI: 10.1007/s11682-023-00835-w
Schlagwort:
  • Humans
  • Male
  • Female
  • Adult
  • Young Adult
  • Brain Mapping methods
  • Temporal Lobe physiopathology
  • Temporal Lobe diagnostic imaging
  • Cognition physiology
  • Middle Aged
  • Epilepsy, Temporal Lobe physiopathology
  • Epilepsy, Temporal Lobe diagnostic imaging
  • Magnetic Resonance Imaging methods
  • Brain physiopathology
  • Brain diagnostic imaging
  • Functional Laterality physiology
Sonstiges:
  • Nachgewiesen in: MEDLINE
  • Sprachen: English
  • Publication Type: Journal Article
  • Language: English
  • [Brain Imaging Behav] 2024 Apr; Vol. 18 (2), pp. 352-367. <i>Date of Electronic Publication: </i>2023 Dec 12.
  • MeSH Terms: Epilepsy, Temporal Lobe* / physiopathology ; Epilepsy, Temporal Lobe* / diagnostic imaging ; Magnetic Resonance Imaging* / methods ; Brain* / physiopathology ; Brain* / diagnostic imaging ; Functional Laterality* / physiology ; Humans ; Male ; Female ; Adult ; Young Adult ; Brain Mapping / methods ; Temporal Lobe / physiopathology ; Temporal Lobe / diagnostic imaging ; Cognition / physiology ; Middle Aged
  • References: Alessio, A., Pereira, F. R., Sercheli, M. S., et al. (2013). Brain plasticity for verbal and visual memories in patients with mesial temporal lobe epilepsy and hippocampal sclerosis: An fMRI study. Human Brain Mapping, 34(1), 186–199. https://doi.org/10.1002/hbm.21432. (PMID: 10.1002/hbm.2143222038783) ; Allone, C., Lo Buono, V., Corallo, F., et al. (2017). Neuroimaging and cognitive functions in temporal lobe epilepsy: A review of the literature. Journal of the Neurological Sciences, 381, 7–15. https://doi.org/10.1016/j.jns.2017.08.007. (PMID: 10.1016/j.jns.2017.08.00728991719) ; Araújo, D., Santos, A. C., Velasco, T. R., et al. (2006). Volumetric evidence of bilateral damage in unilateral mesial temporal lobe epilepsy. Epilepsia, 47(8), 1354–1359. https://doi.org/10.1111/j.1528-1167.2006.00605.x. (PMID: 10.1111/j.1528-1167.2006.00605.x16922881) ; Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., et al. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750–757. https://doi.org/10.1038/nn1075. (PMID: 10.1038/nn107512808459) ; Bernasconi, N., Bernasconi, A., Caramanos, Z., et al. (2003). Mesial temporal damage in temporal lobe epilepsy: A volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain, 126(Pt 2), 462–469. https://doi.org/10.1093/brain/awg034. (PMID: 10.1093/brain/awg03412538412) ; Besson, P., Dinkelacker, V., Valabregue, R., et al. (2014). Structural connectivity differences in left and right temporal lobe epilepsy. NeuroImage, 100, 135–144. https://doi.org/10.1016/j.neuroimage.2014.04.071. (PMID: 10.1016/j.neuroimage.2014.04.07124814212) ; Bettus, G., Wendling, F., Guye, M., et al. (2008). Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Research, 81(1), 58–68. https://doi.org/10.1016/j.eplepsyres.2008.04.020. (PMID: 10.1016/j.eplepsyres.2008.04.02018547787) ; Blumenfeld, H., McNally, K. A., Vanderhill, S. D., et al. (2004). Positive and negative network correlations in temporal lobe epilepsy. Cerebral Cortex, 14(8), 892–902. https://doi.org/10.1093/cercor/bhh048. (PMID: 10.1093/cercor/bhh04815084494) ; Burianová, H., Faizo, N. L., Gray, M., et al. (2017). Altered functional connectivity in mesial temporal lobe epilepsy. Epilepsy Research, 137, 45–52. https://doi.org/10.1016/j.eplepsyres.2017.09.001. (PMID: 10.1016/j.eplepsyres.2017.09.00128923408) ; Burwell, R. D. (2000). The parahippocampal region: Corticocortical connectivity. Annals of the New York Academy of Sciences, 911, 25–42. https://doi.org/10.1111/j.1749-6632.2000.tb06717.x. (PMID: 10.1111/j.1749-6632.2000.tb06717.x10911865) ; Cataldi, M., Avoli, M., & de Villers-Sidani, E. (2013). Resting state networks in temporal lobe epilepsy. Epilepsia, 54(12), 2048–2059. https://doi.org/10.1111/epi.12400. (PMID: 10.1111/epi.12400241170984880458) ; Chang, Y. A., Marshall, A., Bahrami, N., et al. (2019). Differential sensitivity of structural, diffusion, and resting-state functional MRI for detecting brain alterations and verbal memory impairment in temporal lobe epilepsy. Epilepsia, 60(5), 935–947. https://doi.org/10.1111/epi.14736. (PMID: 10.1111/epi.14736310206496584028) ; Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB toolbox for “Pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13. https://doi.org/10.3389/fnsys.2010.00013. (PMID: 10.3389/fnsys.2010.00013205775912889691) ; Chen, J. E., Rubinov, M., & Chang, C. (2017). Methods and considerations for dynamic analysis of functional MR imaging data. Neuroimaging Clinics of North America, 27(4), 547–560. https://doi.org/10.1016/j.nic.2017.06.009. (PMID: 10.1016/j.nic.2017.06.009289859285679015) ; Chiang, S., Stern, J. M., Engel, J., Jr., et al. (2014). Differences in graph theory functional connectivity in left and right temporal lobe epilepsy. Epilepsy Research, 108(10), 1770–1781. https://doi.org/10.1016/j.eplepsyres.2014.09.023. (PMID: 10.1016/j.eplepsyres.2014.09.023254452385013648) ; Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N., & Andrews-Hanna, J. R. (2016). Mind-wandering as spontaneous thought: A dynamic framework. Nature Reviews Neuroscience, 17(11), 718–731. https://doi.org/10.1038/nrn.2016.113. (PMID: 10.1038/nrn.2016.11327654862) ; Concha, L., Beaulieu, C., & Gross, D. W. (2005). Bilateral limbic diffusion abnormalities in unilateral temporal lobe epilepsy. Annals of Neurology, 57(2), 188–196. https://doi.org/10.1002/ana.20334. (PMID: 10.1002/ana.2033415562425) ; Engel, J., Jr., International League Against Epilepsy (ILAE). (2001). A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: Report of the ILAE Task Force on Classification and Terminology. Epilepsia, 42(6), 796–803. https://doi.org/10.1046/j.1528-1157.2001.10401.x. (PMID: 10.1046/j.1528-1157.2001.10401.x11422340) ; Fahoum, F., Lopes, R., Pittau, F., Dubeau, F., & Gotman, J. (2012). Widespread epileptic networks in focal epilepsies: EEG-fMRI study. Epilepsia, 53(9), 1618–1627. https://doi.org/10.1111/j.1528-1167.2012.03533.x. (PMID: 10.1111/j.1528-1167.2012.03533.x226911744492710) ; Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711. https://doi.org/10.1038/nrn2201. (PMID: 10.1038/nrn220117704812) ; Gao, Y. J., Wang, X., Xiong, P. G., et al. (2021). Abnormalities of the default-mode network homogeneity and executive dysfunction in people with first-episode, treatment-naive left temporal lobe epilepsy. European Review for Medical and Pharmacological Sciences, 25(4), 2039–2049. https://doi.org/10.26355/eurrev_202102_25108. (PMID: 10.26355/eurrev_202102_2510833660816) ; Hindriks, R., Adhikari, M. H., Murayama, Y., et al. (2016). Corrigendum to “Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?” [NeuroImage 127 (2016) 242–256]. NeuroImage, 132, 115. https://doi.org/10.1016/j.neuroimage.2016.02.007. (PMID: 10.1016/j.neuroimage.2016.02.00727131042) ; Holmes, M., Folley, B. S., Sonmezturk, H. H., et al. (2014). Resting state functional connectivity of the hippocampus associated with neurocognitive function in left temporal lobe epilepsy. Human Brain Mapping, 35(3), 735–744. https://doi.org/10.1002/hbm.22210. (PMID: 10.1002/hbm.2221023124719) ; Ishai, A., Haxby, J. V., & Ungerleider, L. G. (2002). Visual imagery of famous faces: Effects of memory and attention revealed by fMRI. NeuroImage, 17(4), 1729–1741. https://doi.org/10.1006/nimg.2002.1330. (PMID: 10.1006/nimg.2002.133012498747) ; La Grutta, V., & Sabatino, M. (1988). Focal hippocampal epilepsy: Effect of caudate stimulation. Experimental Neurology, 99(1), 38–49. (PMID: 10.1016/0014-4886(88)90125-23121379) ; Liang, X., Pang, X., Liu, J., et al. (2020). Comparison of topological properties of functional brain networks with graph theory in temporal lobe epilepsy with different duration of disease. Annals of Translational Medicine, 8(22), 1503. https://doi.org/10.21037/atm-20-6823. (PMID: 10.21037/atm-20-6823333132487729351) ; Liao, W., Li, J., Ji, G. J., et al. (2019). Endless fluctuations: Temporal dynamics of the amplitude of low frequency fluctuations. IEEE Transactions on Medical Imaging, 38(11), 2523–2532. https://doi.org/10.1109/TMI.2019.2904555. (PMID: 10.1109/TMI.2019.290455530872224) ; Liao, W., Wu, G. R., Xu, Q., et al. (2014). DynamicBC: A MATLAB toolbox for dynamic brain connectome analysis. Brain Connect., 4(10), 780–790. https://doi.org/10.1089/brain.2014.0253. (PMID: 10.1089/brain.2014.0253250837344268585) ; Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157. https://doi.org/10.1038/35084005. (PMID: 10.1038/3508400511449264) ; Maneshi, M., Vahdat, S., Fahoum, F., Grova, C., & Gotman, J. (2014). Specific resting-state brain networks in mesial temporal lobe epilepsy. Frontiers in Neurology, 5, 127. https://doi.org/10.3389/fneur.2014.00127. (PMID: 10.3389/fneur.2014.00127250717124095676) ; Nakai, Y., Nishibayashi, H., Donishi, T., et al. (2021). Regional abnormality of functional connectivity is associated with clinical manifestations in individuals with intractable focal epilepsy. Scientific Reports, 11(1), 1545. https://doi.org/10.1038/s41598-021-81207-6. (PMID: 10.1038/s41598-021-81207-6334523887810833) ; Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The Enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(Pt 7), 1718–1731. https://doi.org/10.1093/brain/awm052. (PMID: 10.1093/brain/awm05217392317) ; Pang, X., Liang, X., Zhao, J., et al. (2022). Abnormal static and dynamic functional connectivity in left and right temporal lobe epilepsy. Frontiers in Neuroscience, 15, 820641. https://doi.org/10.3389/fnins.2021.820641. (PMID: 10.3389/fnins.2021.820641351260488813030) ; Park, H. J., Friston, K. J., Pae, C., et al. (2018). Dynamic effective connectivity in resting state fMRI. NeuroImage, 180(Pt B), 594–608. https://doi.org/10.1016/j.neuroimage.2017.11.033. (PMID: 10.1016/j.neuroimage.2017.11.03329158202) ; Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. https://doi.org/10.1016/j.neuroimage.2011.10.018. (PMID: 10.1016/j.neuroimage.2011.10.01822019881) ; Power, J. D., Plitt, M., Laumann, T. O., et al. (2017). Sources and implications of whole-brain fMRI signals in humans. NeuroImage, 146, 609–625. https://doi.org/10.1016/j.neuroimage.2016.09.038. (PMID: 10.1016/j.neuroimage.2016.09.03827751941) ; Preti, M. G., Bolton, T. A., & Van De Ville, D. (2017). The dynamic functional connectome: State-of-the-art and perspectives. NeuroImage, 160, 41–54. https://doi.org/10.1016/j.neuroimage.2016.12.061. (PMID: 10.1016/j.neuroimage.2016.12.06128034766) ; Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180–190. https://doi.org/10.1016/j.tics.2010.01.008. (PMID: 10.1016/j.tics.2010.01.00820206576) ; Raichle, M. E. (2015). The restless brain: How intrinsic activity organizes brain function. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 370(1668), 20140172. https://doi.org/10.1098/rstb.2014.0172. (PMID: 10.1098/rstb.2014.0172258238694387513) ; Reyes, A., Thesen, T., Wang, X., et al. (2016). Resting-state functional MRI distinguishes temporal lobe epilepsy subtypes. Epilepsia, 57(9), 1475–1484. https://doi.org/10.1111/epi.13456. (PMID: 10.1111/epi.1345627374869) ; Reyes, A., Uttarwar, V. S., Chang, Y. A., et al. (2018). Decreased neurite density within frontostriatal networks is associated with executive dysfunction in temporal lobe epilepsy. Epilepsy & Behavior, 78, 187–193. https://doi.org/10.1016/j.yebeh.2017.09.012. (PMID: 10.1016/j.yebeh.2017.09.012) ; Sakoğlu, U., Pearlson, G. D., Kiehl, K. A., et al. (2010). A method for evaluating dynamic functional network connectivity and task-modulation: Application to schizophrenia. Magma, 23(5–6), 351–366. https://doi.org/10.1007/s10334-010-0197-8. (PMID: 10.1007/s10334-010-0197-8201623202891285) ; Schmahmann, J. D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62–75. https://doi.org/10.1016/j.neulet.2018.07.005. (PMID: 10.1016/j.neulet.2018.07.00529997061) ; Schwartz, T. H., & Bonhoeffer, T. (2001). In vivo optical mapping of epileptic foci and surround inhibition in ferret cerebral cortex. Nature Medicine, 7(9), 1063–1067. https://doi.org/10.1038/nm0901-1063. (PMID: 10.1038/nm0901-106311533712) ; Shi, K., Pang, X., Wang, Y., et al. (2021). Altered interhemispheric functional homotopy and connectivity in temporal lobe epilepsy based on fMRI and multivariate pattern analysis. Neuroradiology, 63(11), 1873–1882. https://doi.org/10.1007/s00234-021-02706-x. (PMID: 10.1007/s00234-021-02706-x33938990) ; Singh, T. B., Aisikaer, A., He, C., et al. (2020). The assessment of brain functional changes in the temporal lobe epilepsy patient with cognitive impairment by resting-state functional magnetic resonance imaging. Journal of Clinical Imaging Science, 10, 50. https://doi.org/10.25259/JCIS_55_2020. (PMID: 10.25259/JCIS_55_2020328747557451150) ; Song, C., Zhang, X., Han, S., et al. (2022). More than just statics: Static and temporal dynamic changes in intrinsic brain activity in unilateral temporal lobe epilepsy. Frontiers in Human Neuroscience, 16, 971062. https://doi.org/10.3389/fnhum.2022.971062. (PMID: 10.3389/fnhum.2022.971062361189649471141) ; Spencer, S. S. (2002). Neural networks in human epilepsy: Evidence of and implications for treatment. Epilepsia, 43(3), 219–227. https://doi.org/10.1046/j.1528-1157.2002.26901.x. (PMID: 10.1046/j.1528-1157.2002.26901.x11906505) ; Trimmel, K., van Graan, A. L., Caciagli, L., et al. (2018). Left temporal lobe language network connectivity in temporal lobe epilepsy. Brain, 141(8), 2406–2418. https://doi.org/10.1093/brain/awy164. (PMID: 10.1093/brain/awy16429939211) ; Tuchscherer, V., Seidenberg, M., Pulsipher, D., et al. (2010). Extrahippocampal integrity in temporal lobe epilepsy and cognition: Thalamus and executive functioning. Epilepsy & Behavior, 17(4), 478–482. https://doi.org/10.1016/j.yebeh.2010.01.019. (PMID: 10.1016/j.yebeh.2010.01.019) ; Van Paesschen, W., Dupont, P., Van Driel, G., Van Billoen, H., & Maes, A. (2003). SPECT perfusion changes during complex partial seizures in patients with hippocampal sclerosis. Brain, 126(Pt 5), 1103–1111. https://doi.org/10.1093/brain/awg108. (PMID: 10.1093/brain/awg10812690050) ; Vaughan, D. N., Rayner, G., Tailby, C., & Jackson, G. D. (2016). MRI-negative temporal lobe epilepsy: A network disorder of neocortical connectivity. Neurology, 87(18), 1934–1942. https://doi.org/10.1212/WNL.0000000000003289. (PMID: 10.1212/WNL.000000000000328927694267) ; Viard, A., Piolino, P., Desgranges, B., et al. (2007). Hippocampal activation for autobiographical memories over the entire lifetime in healthy aged subjects: An fMRI study. Cerebral Cortex, 17(10), 2453–2467. https://doi.org/10.1093/cercor/bhl153. (PMID: 10.1093/cercor/bhl15317204823) ; Výtvarová, E., Mareček, R., Fousek, J., et al. (2016). Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia. Neuroimage Clinical, 14, 28–36. https://doi.org/10.1016/j.nicl.2016.12.014. (PMID: 10.1016/j.nicl.2016.12.014281239515222946) ; Wang, K., Zhang, X., Song, C., et al. (2021). Decreased intrinsic neural timescales in mesial temporal lobe epilepsy. Frontiers in Human Neuroscience, 15, 772365. https://doi.org/10.3389/fnhum.2021.772365. (PMID: 10.3389/fnhum.2021.772365349557908693765) ; Xu, Q., Zhang, Z., Liao, W., et al. (2014). Time-shift homotopic connectivity in mesial temporal lobe epilepsy. AJNR. American Journal of Neuroradiology, 35(9), 1746–1752. https://doi.org/10.3174/ajnr.A3934. (PMID: 10.3174/ajnr.A3934247428027966270) ; Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: Data processing & analysis for (Resting-State) brain imaging. Neuroinformatics, 14(3), 339–351. https://doi.org/10.1007/s12021-016-9299-4. (PMID: 10.1007/s12021-016-9299-427075850) ; Yan, C. G., Yang, Z., Colcombe, S. J., et al. (2017). Concordance among indices of intrinsic brain function: Insights from inter individual variation and temporal dynamics. Science Bulletin, 62(23), 1572–1584. https://doi.org/10.1016/j.scib.2017.09.015. (PMID: 10.1016/j.scib.2017.09.01536659475) ; Yang, H., Long, X. Y., Yang, Y., et al. (2007). Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI. NeuroImage, 36(1), 144–152. https://doi.org/10.1016/j.neuroimage.2007.01.054. (PMID: 10.1016/j.neuroimage.2007.01.05417434757) ; Yu, W., & Krook-Magnuson, E. (2015). Cognitive collaborations: Bidirectional functional connectivity between the cerebellum and the hippocampus. Frontiers in Systems Neuroscience, 9, 177. https://doi.org/10.3389/fnsys.2015.00177. (PMID: 10.3389/fnsys.2015.00177267328454686701) ; Zang, Y. F., He, Y., Zhu, C. Z., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI [published correction appears in Brain Dev. 2012 Apr;34(4):336]. Brain and Development, 29(2), 83–91. https://doi.org/10.1016/j.braindev.2006.07.002. (PMID: 10.1016/j.braindev.2006.07.00216919409) ; Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400. https://doi.org/10.1016/j.neuroimage.2003.12.030. (PMID: 10.1016/j.neuroimage.2003.12.03015110032) ; Zeng, H., Pizarro, R., Nair, V. A., et al. (2013). Alterations in regional homogeneity of resting-state brain activity in mesial temporal lobe epilepsy. Epilepsia, 54(4), 658–666. https://doi.org/10.1111/epi.12066. (PMID: 10.1111/epi.12066232941374052837) ; Zhang, Z., Lu, G., Zhong, Y., et al. (2009). Impaired perceptual networks in temporal lobe epilepsy revealed by resting fMRI. Journal of Neurology, 256(10), 1705–1713. https://doi.org/10.1007/s00415-009-5187-2. (PMID: 10.1007/s00415-009-5187-219488674) ; Zhang, Z., Lu, G., Zhong, Y., et al. (2010). fMRI study of mesial temporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Human Brain Mapping, 31(12), 1851–1861. https://doi.org/10.1002/hbm.20982. (PMID: 10.1002/hbm.20982202252786870704) ; Zhao, B., Yang, B., Tan, Z., et al. (2020). Intrinsic brain activity changes in temporal lobe epilepsy patients revealed by regional homogeneity analysis. Seizure, 81, 117–122. https://doi.org/10.1016/j.seizure.2020.07.030. (PMID: 10.1016/j.seizure.2020.07.03032781401) ; Zou, Q. H., Zhu, C. Z., Yang, Y., et al. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141. https://doi.org/10.1016/j.jneumeth.2008.04.012. (PMID: 10.1016/j.jneumeth.2008.04.012185019693902859) ; Zuo, X. N., Ehmke, R., Mennes, M., et al. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 1862–1875. https://doi.org/10.1093/cercor/bhr269. (PMID: 10.1093/cercor/bhr26921968567) ; Zuo, X. N., Kelly, C., Di Martino, A., et al. (2010). Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy. Journal of Neuroscience, 30(45), 15034–15043. https://doi.org/10.1523/JNEUROSCI.2612-10.2010. (PMID: 10.1523/JNEUROSCI.2612-10.201021068309)
  • Contributed Indexing: Keywords: Dynamic; Resting-state functional magnetic resonance imaging; Spontaneous brain activity; Temporal lobe epilepsy
  • Entry Date(s): Date Created: 20231212 Date Completed: 20240606 Latest Revision: 20240606
  • Update Code: 20240606

Klicken Sie ein Format an und speichern Sie dann die Daten oder geben Sie eine Empfänger-Adresse ein und lassen Sie sich per Email zusenden.

oder
oder

Wählen Sie das für Sie passende Zitationsformat und kopieren Sie es dann in die Zwischenablage, lassen es sich per Mail zusenden oder speichern es als PDF-Datei.

oder
oder

Bitte prüfen Sie, ob die Zitation formal korrekt ist, bevor Sie sie in einer Arbeit verwenden. Benutzen Sie gegebenenfalls den "Exportieren"-Dialog, wenn Sie ein Literaturverwaltungsprogramm verwenden und die Zitat-Angaben selbst formatieren wollen.

xs 0 - 576
sm 576 - 768
md 768 - 992
lg 992 - 1200
xl 1200 - 1366
xxl 1366 -